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ABSTRACT

Surface Electro-MyoGraphic (sEMG) signals recorded on the forearm can provide in-

formation about the hand movement, which can help to control a prosthetic implant for

the disabled people. To do so, the sEMG signals must be accurately classified despite

the signals’ non-stationarity, different kind of noises, multiple involved muscles, and

patient’s peculiarities. This thesis deals with the classification of hand movements us-

ing sEMG signals, and focuses especially on the use and enhancing the time–frequency

domain features and several linear and non-linear methods for the dimension reduc-

tion. In this thesis, different known time-frequency methods were applied and com-

pared such as Short Time Frequency Transform (STFT), Stockwell Transform (ST),

Continues Wavelet Transform (CWT), and the Discrete Orthonormal Stockwell Trans-

form (DOST) which is applied for the first time on sEMG signals. These methods were

combined with different linear and non-linear dimension reduction methods as PCA,

Isomap, Diffusion Maps (DM) and Multidimensional Scaling (MDS) which is also ap-

plied for the first time on sEMG signals. An extensive comparison study was made on

the combinations of all used methods, and the evaluation of the applied methods used

classical classifiers and a public dataset. We proved the efficiency of using the TF fea-

tures and potential of using the non-linear dimension reduction methods. We applied

the generalized version of DOST (GDOST) and enhanced the similarity calculations in

the MDS method to significantly improve our best results from 90.96% to 97.56% as

accuracy rate of 17 hand movements. Then the experiments were extended on a data

recorded on amputees where the clinical amputation characteristics affect the quality

of sEMG signals. The results were compared based on these clinical characteristics.

The number of movements was also increased to 40 movements and the accuracy score

was 90.02%. Finally, we applied our methods on a different data source recorded by

our partner team under a completely different acquisition protocol, and the achieved

classification accuracy was 99.31% for 4 different movements.

Résumé en français

Les signaux électromyogrammes de surface (sEMG) enregistrés sur l’avant-bras peu-

vent fournir des informations sur le mouvement de la main, ce qui peut aider à contrôler
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un implant prothétique pour les personnes handicapées. Pour ce faire, les signaux

sEMG doivent être classés avec précision malgré la non-stationnarité des signaux, les

différents types de bruits, les multiples muscles impliqués et les particularités du pa-

tient. Cette thèse traite de la classification des mouvements de la main à l’aide de

signaux sEMG, et se concentre particulièrement sur l’utilisation et l’amélioration des

caractéristiques du domaine temps-fréquence et sur plusieurs méthodes linéaires et non

linéaires pour la réduction de la dimension. Dans cette thèse, différentes méthodes

temps-fréquence connues ont été appliquées et comparées, telles que la transformée

temps-fréquence courte (STFT), la transformée de Stockwell (ST), la transformée en

ondelettes continue (CWT) et la transformée orthonormée discrète de Stockwell (DOST),

qui est appliquée pour la première fois aux signaux sEMG. Ces méthodes ont été com-

binées avec différentes méthodes de réduction des dimensions linéaires et non linéaires

telles que l’ACP, l’Isomap, les cartes de diffusion (DM) et l’échelle multidimension-

nelle (MDS) qui est également appliquée pour la première fois aux signaux sEMG.

Une étude comparative approfondie a été réalisée sur toutes les méthodes utilisées.

Nous avons prouvé l’efficacité de l’utilisation des caractéristiques TF et le potentiel

de l’utilisation des méthodes de réduction des dimensions non linéaires. Nous avons

appliqué la version généralisée de DOST (GDOST) et amélioré les calculs de similarité

dans la méthode MDS pour améliorer de manière significative nos meilleurs résultats

de 90,96% à 97,56% pour un taux de précision de 17 mouvements de la main. Les

expériences ont ensuite été étendues à des données enregistrées sur des personnes am-

putées, dont les caractéristiques cliniques affectent la qualité des signaux sEMG. Les

résultats ont été comparés en fonction de ces caractéristiques cliniques. Le nombre

de mouvements a également été augmenté à 40 mouvements et la précision a été de

90,02%. Enfin, nous avons appliqué nos méthodes sur des données enregistrée par notre

équipe partenaire selon un protocole d’acquisition totalement différent, et la précision

de classification obtenue a été de 99,31 % pour 4 mouvements différents.

Keywords: sEMG signals, time-frequency transforms, hand movements classifica-

tion, non-linear dimension reduction.
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CHAPTER 1

INTRODUCTION

1.1 English Version

1.1.1 Background And Motivation

The loss of a limb reduces the ability to have a normal life and negatively affects the pa-

tient by preventing him from carrying out his daily activities. This disability has an im-

pact on the person mobility, self-care, self-image, community and leisure involvement.

According to National Limb Loss Resource Center [1], there are nearly 1.6 million

people living with limb loss in the United States with approximately 185,000 amputa-

tions occurring each year; and around 70% of amputations due to trauma involve the

upper limbs. In the United Kingdom, amputation of upper limb may reach 10,000 of

250,000 per year with an estimated 55,000 - 60,000 of amputees attending specialist

rehabilitation service centers [2, 3].

Forearm amputations are a life-changing event, usually caused due to sudden, un-

expected trauma, but the lost body part could be replaced by an artificial device, called

a prosthetic. The prosthetic should mimic the functionality of the lost part as close as

possible which helps the amputee in rehabilitation and to stay independent, especially

when speaking about the upper limb.

Although the upper limb prostheses could replace some of these essential activities,

still up to 25% of amputees do not use any kind of prostheses, and around 50% do not

use electrical prostheses at all [4].

The reluctance of upper limb prosthetic for the amputees is likely to be 50% and higher

with no significant change in this rate in the last decade [5]. A main reason of such

abandonment is the need for more proficiency in the prosthetic which could involve

wider range of movements including movements of fingers and joints [6, 7]. Limited
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degrees of freedom (DOFs), accuracy rate, time required for training, weight and shape

are all important concerns that play significant role in amputees acceptance. This means

a lot of research is still needed in this area to improve accuracy, DOFs, required training

time, response time, and so on. These important factors increase the acceptance and

possibility of using prostheses.

1.1.2 Upper Limb Prosthetic

There are two main types of prosthetic control: intrusive and non-intrusive. The most

common type of prosthetic control system is the non-intrusive myoelectric control sys-

tem which uses the surface electromyography (sEMG) signals as input to identify the

intention of the limb movement. The acquisition of the EMG signals is made by elec-

trodes placed on the skin near the muscles. The electrical activities detected by these

electrodes contain signals patterns which can be used to identify the movement inten-

tion. The advantage of the non-intrusive myoelectric control is that it is more natural and

does not need a harness or surgical procedure [8]. Although the myoelectric-controlled

prosthetic was proposed in the late 1960s, it was a simple on/off device triggered when

the sEMG amplitude exceed a certain threshold. Recently, the pattern recognition (PR)

based control made a significant improvement in the prosthetic technology and im-

proved to be the most promising for the upper limb control [9]. This kind of control

assumes that each hand movement contains specific sEMG signal pattern different from

other movements. The PR-based control system gives a new solutions for the complex-

ity of the upper limb movements and allows prosthetic to have more DOFs by ability

to classify the movements using their sEMG patterns. Nevertheless, movements of

the fingers or hand grip or any other hand gesture result from combinations of multi-

ple muscles contractions in the forearm, and the resulting sEMG signals will contain

significant similarities which make distinguishing and classification of these sEMG a

difficult challenge [10].

Upper limb prosthetic contains in general electrodes to detect the sEMG signals

on the surface of the skin. These signals will be amplified, filtered and then will be

processed to extract meaningful features. A suitable machine learning model should be

trained to find out the patterns in these sEMG signals and to make a decision about the

movements intention. Figure 1.1 summarizes the process of prosthetic control systems

including sEMG acquisition, movements’ identification and control.

1.1.3 sEMG Signals

The EMG signals are the electrical activities of the muscles which are activated by

physiological neural signals. The EMG signals reflect a potential movement intended

to be performed by the skeletal muscles [11]. The muscles include long tubular cells

2



Fig. 1.1 Prosthetic control system outlines.

called fibers, and the EMG signal is the result of the signals from each of these muscle

cells which by their turn affected by the person’s physiology. The EMG signals are used

widely in the medical area in clinical and rehabilitation devices as prostheses, and also

in the industry and entertainment for human-machine interfaces [12]. These signals

are used as input for electromyographic control systems which is based on classifying

EMG signals.

EMG signals are non-stationary signals whose amplitude generally ranges from

0.01mV to 10mV. Their main energy is concentrated between 0Hz and 500Hz frequency

band, and the most significant spectrum is 50-150Hz [13]. The acquisition of EMG sig-

nals can be invasive or non-invasive. The non-invasive is the preferred method as the

invasive acquisition is painful as it needs surgical operation, besides to their limited

use when activities from several muscles need to be monitored simultaneously [14, 15].

The signals recorded using non-invasive acquisition are called surface EMG (sEMG)

signals. sEMG signals are usually recorded using electrodes placed on the surface of

the skin near to the target muscles. Different studies were made on the placement of the

electrodes [16] and different strategies were investigated to enhance these signals acqui-

sition over the past decades. Some researchers study the use of multi-channel electrode

arrays or high-density EMG strategy [17], while others explore the precise anatomical

positioning approach [18].

1.1.3.1 sEMG Signal Origin

The movement starts by a nervous signal by the central nervous system (CNS) that ac-

tivates the muscle and triggers the fiber contraction. The depolarized zones of the fibers

of each recruited motor unit (MU) give rise to an electrical field and generate voltage

contributions that add up on the skin to form a voltage distribution. The generated elec-
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trical activity on the skin is impacted by the distances between the skin and each source,

which gives the superficial MUs more contribution than the deep MUs. These generated

electrical signals could be recorded using typically two electrodes for each muscle [19].

1.1.3.2 sEMG Noise Types

Despite the development in the acquisition technology, the sEMG signals are always

accompanied with different types of noises due to the presence of electronic equipment

and physiological factors [12]:

• Inherent noise in the electrodes: All types of electronic equipment generate this

type of electrical noise. In order to reduce this noise in recording sEMG, the

electrodes made of silver/silver chloride (10 × 1 mm) have been found to give

adequate signal-to-noise ratio and are electrically very steady. For this reason,

they are widely used as surface electrodes [20].

• Movement artifact: The EMG signals are recorded while movements are per-

formed. The skin and the length of the muscle will change during this movement

and that will cause some movement artifacts on the electrodes. This noise has

a frequency range between 1-10 Hz with amplitude comparable to the recorded

EMG, but it could be removed significantly using recessed electrodes, in which a

conductive gel layer is used between the skin surface and the electrode interface.

• Ambient noise: Electromagnetic radiation is the source of this type of noise. The

surfaces of our bodies are constantly inundated with electro-magnetic radiation

and it is virtually impossible to avoid exposure to it on the surface of Earth. The

dominant concern for the ambient noise arises from the power-line interference.

This is caused by differences in the electrode impedance and in stray currents

through the patient and the cables.

• Cross Talk: This type of noise comes from EMG signals that are generated by

unrelated muscles, which are not involved in the movement under monitoring.

Some possibilities to minimize this noise is by using smaller size electrodes and

choosing best placement for the electrodes [21].

• Internal Noise: The quality of the recorded EMG signals are affected by the

anatomical, biochemical and physiological factors. This comes from the fact

that the EMG are generated on low level of muscle fibers, so the number, depth

and location of the active fibers will affect the quality of EMG. Moreover, the

characteristics of EMG signals can differ from a person to another for the same

reason.
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These different kind of noises make analyzing and classifying the sEMG signals more

difficult challenge and increase the need of more accurate sEMG signal acquisition in

both hardware and software.

1.1.3.3 sEMG States

The sEMG signals have two states: the first is the transient state which happens when

the muscle is triggered to start contraction, then comes the steady state where the muscle

maintains the contraction [22]. The transient state contains bursts of firing electrical

activities that starts the muscles contraction, while the steady state contains a constant

firing rate that keeps the position of contraction [23]. The sEMG features in general

could be extracted and classified in both states. Although the steady-state data exhibits

distinct superiority to the transient data and leads to better classification [24]. It has

been observed in clinical applications that combining the transient and the steady-state

EMG signals together for training the classifier can increase the recognition system’s

usability. Although using the combination of these two states might reduce the overall

classification accuracy, it will improve the classification during the dynamic stages of

the movements (start and end), which increases the usability by getting rid of the miss-

classification in these stages and reducing the response time [25].

The fact that sEMG signals are non-stationary and can be contaminated by a wide

variety of noises, besides to the complicated motions’ patterns and many degrees of

freedoms in the upper limb, makes the movements pattern recognition a very difficult

task [26]. In figure 1.2, we can see example of recorded sEMG signals of the forearm

when performing two different hand movements using one electrode.
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Fig. 1.2 Recorded sEMG signals of two hand movements [27].
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1.1.4 Objectives

In this thesis, we aim to improve sEMG pattern recognition by applying advanced sig-

nal processing and machine learning methods. More precisely, the contribution of this

thesis is focused on the features extraction and dimension reduction fields. The non-

stationary nature of the sEMG signals promotes the time-frequency transforms, which

in turn produces a high dimensional features space. These high-dimensional feature

spaces require efficient dimension reduction methods that improve classification per-

formance. The main objectives can be summarized as:

• Comparing the known feature extraction methods in the literature in the field of

hand gesture recognition.

• Extending the state of the art Time Frequency (TF) transforms used in this area

by introducing new methods.

• Extending the study on the non-linear Dimension Reduction (DR) methods, by

comparing used ones and applying new methods in the field.

• Enhancing the non-linear DR methods by finding better similarity measurements,

and improving their performance.

• Applying and comparing all of these methods combinations on same sEMG dataset.

Give overall overview for different combination with a fair comparison in a help-

ful way for researchers in this field.

• Applying state of the art deep learning network with the TF features and compare

with the other combinations.

1.1.5 This Thesis

In this thesis, we will follow the following structure:

• In chapter 2, we will give an overview about the state of the art regarding sEMG

classification for hand movements, the known methods in feature extraction, di-

mension reduction and classification, besides the available industry solutions for

the prosthesis.

• Chapter 3 contains a theoretical background of the used methods in both time-

frequency features extraction and linear/non-linear dimension reduction methods.

Some of these methods are used in the literature and others are newly applied in

this area.
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• Chapter 4 explains the process of applying list of methods’ combinations seen in

chapter 3, starting from the data used ending with the classification results using

these methods combinations with extended comparison. Then we go through our

improvements on the state of the art in this field. We explain the new methods we

used and the improvements we added to these methods in both feature extraction

and dimension reduction stages. Then we make experiments on different types

of datasets. We test our methods on amputees’ sEMG data, then we increase the

number of movements in our experiment. Finally, we test our methods on sEMG

signals recorded locally by our partner’s team.

• Chapter 5 contains the final conclusion, the outlines of the research and the pro-

posed future work.

The work in this thesis allowed to publish a journal paper in Expert Systems with

Applications (2022)[28]. In this paper, several combinations of sEMG Time-Frequency

(TF) features extraction and Dimension Reduction (DR) methods were compared. Meth-

ods as the Discrete Orthonormal Stockwell Transform (DOST) and Multidimensional

Scaling (MDS) are applied for the first time on sEMG signals with promising results by

DOST and significant reduction of the computational burden. The results of this journal

paper are reported in section 4.2.

Two conference papers were also published, first one in BIOSIGNALS (2020) [29],

which was a preliminary work for the previous journal paper. The second paper was

published in the 30th European Signal Processing Conference (EUSIPCO) [30], in

which we proposed the generalized version of DOST (GDOST) with an enhanced

Multi-Dimensional Scaling (MDS) method. These results also appeared in the French

signal processing conference (GRETSI) [31], and are reported in section 4.3.

1.2 Version en Français

1.2.1 Contexte et motivation

La perte d’un membre réduit la capacité à mener une vie normale et affecte négativement

le patient en l’empêchant de mener à bien ses activités quotidiennes. Cet handicap a un

impact sur la mobilité de la personne, ses capacités à prendre soin d’elle-même, son

image de soi, sa participation à la vie de la communauté et aux loisirs. Selon le Na-

tional Limb Loss Resource Center [1], près de 1,6 million de personnes vivent avec une

perte de membre aux États-Unis, avec environ 185 000 amputations par an ; environ

70 % des amputations dues à un traumatisme concernent les membres supérieurs. Au

Royaume-Uni, l’amputation des membres supérieurs peut atteindre 10 000 à 250 000

personnes par an, et on estime que 55 000 à 60 000 amputés fréquentent des centres
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de rééducation spécialisés [2, 3]. Les amputations de l’avant-bras sont un bouleverse-

ment de la vie, généralement dû à un traumatisme soudain et inattendu, mais la partie

du corps perdue peut être remplacée par un dispositif artificiel, appelé prothèse. La

prothèse doit reproduire le plus fidèlement possible la fonctionnalité de la partie per-

due, ce qui aide l’amputé à se réadapter et à rester indépendant, en particulier lorsqu’il

s’agit du membre supérieur. Bien que les prothèses des membres supérieurs puissent

remplacer certaines de leurs activités essentielles, jusqu’à 25 % des amputés n’utilisent

aucun type de prothèse, et environ 50 % n’utilisent pas du tout de prothèses électriques

[4]. La réticence des amputés à l’égard des prothèses des membres supérieurs est proba-

blement de 50 % et plus, sans changement significatif de ce taux au cours de la dernière

décennie [5]. L’une des principales raisons de cet abandon est la nécessité d’une plus

grande maı̂trise de la prothèse, qui pourrait impliquer une plus large gamme de mou-

vements, y compris les mouvements des doigts et des articulations [6, 7]. Les degrés

de liberté limités, le taux de précision, le temps nécessaire à la familiarisation, le poids

et la forme sont autant de facteurs qui jouent un rôle important dans l’acceptation de

la prothèse par les amputés. Cela signifie que de nombreuses recherches sont encore

nécessaires dans ce domaine pour améliorer la précision, les degrés de liberté, le temps

de d’apprentissage nécessaire, le temps de réponse, etc. Ces éléments importants ren-

forcent l’acceptation et la possibilité d’utiliser des prothèses.

1.2.2 Prothèse du membre supérieur

Il existe deux types principaux de commande prothétique : intrusive et non intru-

sive. Le type le plus courant de commande prothétique est le système de commande

myoélectrique non intrusif, qui utilise les signaux d’électromyographie de surface (sEMG)

pour identifier l’intention du mouvement du membre. L’acquisition des signaux EMG

est réalisée par des électrodes placées sur la peau à proximité des muscles. Les activités

électriques détectées par ces électrodes contiennent des signaux qui peuvent être utilisés

pour identifier l’intention du mouvement. L’avantage de la commande myoélectrique

non intrusive est qu’elle est plus naturelle et ne nécessite pas de harnais ou de chirurgie

[8]. Bien que la prothèse à commande myoélectrique ait été proposée à la fin des années

1960, il s’agissait d’un simple dispositif marche/arrêt déclenché lorsque l’amplitude du

sEMG dépassait un certain seuil. Récemment, la commande basée sur la reconnaissance

des formes (PR) a apporté une amélioration significative à la technologie prothétique et

s’est révélée être la plus prometteuse pour la commande des membres supérieurs [9].

Ce type de commande suppose que chaque mouvement de la main contient un signal

sEMG spécifique différent des autres mouvements. Le système de commande basé sur

le PR apporte de nouvelles solutions à la complexité des mouvements des membres

supérieurs et permet aux prothèses d’avoir plus de DOF grâce à la capacité de classi-
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fier les mouvements à l’aide de leurs signaux sEMG. Néanmoins, les mouvements des

doigts, la préhension de la main ou tout autre geste de la main résultent de la combinai-

son de plusieurs contractions musculaires dans l’avant-bras, et les signaux sEMG qui en

résultent contiennent des similitudes significatives qui rendent la distinction et la clas-

sification de ces sEMG difficiles à réaliser [10]. Les prothèses de membres supérieurs

contiennent en général des électrodes pour détecter les signaux sEMG à la surface de la

peau. Ces signaux sont amplifiés, filtrés puis traités pour en extraire des caractéristiques

significatives. Un modèle d’apprentissage automatique approprié doit être entraı̂né pour

trouver les modèles dans ces signaux sEMG et prendre une décision sur l’intention des

mouvements. La figure 1.1 résume le processus des systèmes de contrôle prothétique, y

compris l’acquisition des signaux sEMG, l’identification des mouvements et le contrôle.

1.2.3 Signaux sEMG

Les signaux EMG sont les activités électriques des muscles qui sont activés par des sig-

naux physiologiques neuronaux. Les signaux EMG reflètent un mouvement potentiel

destiné à être exécuté par les muscles squelettiques [11]. Les muscles comprennent de

longues cellules tubulaires appelées fibres, et le signal EMG est le résultat des signaux

provenant de chacune de ces cellules musculaires qui, à leur tour, sont affectées par la

physiologie de la personne. Les signaux EMG sont largement utilisés dans le domaine

médical, dans les appareils cliniques et de rééducation comme les prothèses, ainsi que

dans l’industrie et les loisirs pour les interfaces homme-machine [12]. Ces signaux sont

utilisés comme données d’entrée pour les systèmes de contrôle électromyographique

qui sont basés sur la classification des signaux EMG. Les signaux EMG sont des sig-

naux non stationnaires dont l’amplitude varie généralement entre 0,01mV et 10mV.

Leur énergie principale est concentrée entre la bande de fréquence 0Hz et 500Hz, et

le spectre le plus significatif est 50-150Hz [13]. L’acquisition des signaux EMG peut

être invasive ou non invasive. La méthode non invasive est privilégiée car l’acquisition

invasive est douloureuse et nécessite une opération chirurgicale, sans compter que son

utilisation est limitée lorsque l’activité de plusieurs muscles doit être mesurée simul-

tanément [14, 15]. Les signaux enregistrés à l’aide de l’acquisition non invasive sont

appelés signaux EMG de surface (sEMG). Les signaux sEMG sont généralement en-

registrés à l’aide d’électrodes placées à la surface de la peau, à proximité des muscles

cibles. Différentes études ont été réalisées sur l’emplacement des électrodes [16] et

différentes stratégies ont été étudiées pour améliorer l’acquisition de ces signaux au

cours des dernières décennies. Certains chercheurs étudient l’utilisation de réseaux

d’électrodes multicanaux ou d’une stratégie EMG à haute densité [17], tandis que

d’autres explorent l’approche du positionnement anatomique précis [18].
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1.2.3.1 Origine du signal sEMG

Le mouvement commence par un signal nerveux du système nerveux central (SNC)

qui active le muscle et déclenche la contraction des fibres. Les zones dépolarisées des

fibres de chaque unité motrice (UM) activée donnent naissance à un champ électrique

et génèrent des variations de tension qui s’additionnent sur la peau pour former une

distribution de tension. L’activité électrique générée sur la peau est influencée par les

distances entre la peau et chaque source, ce qui donne aux UM superficielles une contri-

bution plus importante que les UM profondes. Ces signaux électriques générés peuvent

être enregistrés à l’aide de deux électrodes pour chaque muscle [19].

1.2.3.2 Les types de bruit sEMG

Malgré le développement des technologies d’acquisition, les signaux sEMG sont tou-

jours accompagnés de différents types de bruits dus à la présence d’équipements électroniques

et de facteurs physiologiques [12] :

• Bruit inhérent aux électrodes : Tous les types d’équipements électroniques génèrent

ce type de bruit électrique. Afin de réduire ce bruit lors de l’enregistrement du

sEMG, les électrodes en argent/chlorure d’argent (10 × 1 mm) offrent un rapport

signal/bruit adéquat et sont électriquement très stables. C’est pourquoi elles sont

largement utilisées comme électrodes de surface [20].

• Artéfact de mouvement : les signaux EMG sont enregistrés pendant que des mou-

vements sont effectués. La peau et la longueur du muscle changent au cours de

ce mouvement, ce qui provoque des artefacts de mouvement sur les électrodes.

Ce bruit a une fréquence comprise entre 1 et 10 Hz et une amplitude comparable

à celle de l’EMG enregistré, mais il peut être éliminé de manière significative en

utilisant des électrodes encastrées, dans lesquelles une couche de gel conducteur

est utilisée entre la surface de la peau et l’interface de l’électrode.

• Bruit ambiant : Le rayonnement électromagnétique est la source de ce type de

bruit. Les surfaces de notre corps sont constamment inondées de rayonnements

électromagnétiques et il est pratiquement impossible d’éviter d’y être exposé

à la surface de la Terre. Le principal problème lié au bruit ambiant provient

de l’interférence des lignes électriques. Elles sont causées par les différences

d’impédance des électrodes et par les courants parasites qui traversent le patient

et les câbles.

• Bruit croisé (Cross Talk) : Ce type de bruit provient des signaux EMG générés

par des muscles non apparentés, qui ne sont pas impliqués dans le mouvement à
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surveiller. Il est possible de réduire ce bruit en utilisant des électrodes plus petites

et en choisissant le meilleur emplacement pour les électrodes [21].

• Bruit interne : La qualité des signaux EMG enregistrés est affectée par des fac-

teurs anatomiques, biochimiques et physiologiques. Cela est dû au fait que l’EMG

est généré au niveau inférieur des fibres musculaires, de sorte que le nombre, la

profondeur et l’emplacement des fibres actives affectent la qualité de l’EMG.

En outre, les caractéristiques des signaux EMG peuvent varier d’une personne à

l’autre pour la même raison.

Ces différents types de bruits rendent l’analyse et la classification des signaux sEMG

plus difficiles et augmentent la nécessité d’une acquisition plus précise des signaux

sEMG, tant au niveau du matériel que du logiciel.

1.2.3.3 États des signaux sEMG

Les signaux sEMG ont deux états : le premier est l’état transitoire qui se produit lorsque

le muscle est déclenché pour commencer la contraction, puis vient l’état stable où le

muscle maintient la contraction [22]. L’état transitoire contient des salves d’activités

électriques qui déclenchent la contraction musculaire, tandis que l’état stable contient

un niveau d’activité constant qui maintient la position de la contraction [23]. Les car-

actéristiques sEMG peuvent généralement être extraites et classées dans les deux états.

Toutefois, les données à l’état stable présentent une nette supériorité par rapport aux

données transitoires et permettent une meilleure classification [24]. Il a été observé dans

les applications cliniques que la combinaison des signaux EMG transitoires et à l’état

stable pour l’entraı̂nement du classificateur peut améliorer la capacité d’utilisation du

système de détection. Bien que l’utilisation de la combinaison de ces deux états puisse

réduire la précision globale de la classification, elle améliore la classification pendant

les phases dynamiques des mouvements (début et fin), ce qui augmente la fonctionnalité

en éliminant les erreurs de classification pendant ces phases et en réduisant le temps de

réponse [25]. Le fait que les signaux sEMG soient non stationnaires et puissent être

perturbés par une grande variété de bruits, en plus des mouvements compliqués et des

nombreux degrés de liberté du membre supérieur, fait de la reconnaissance des mouve-

ments une tâche très difficile [26]. La figure 1.2 montre un exemple de signaux sEMG

enregistrés sur l’avant-bras lors de l’exécution de deux mouvements différents de la

main à l’aide d’une électrode.

1.2.4 Objectifs

Dans cette thèse, nous visons à améliorer la reconnaissance des signaux sEMG en ap-

pliquant des méthodes avancées de traitement du signal et d’apprentissage automa-
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tique. Plus précisément, la contribution de cette thèse se focalise sur les domaines

de l’extraction des caractéristiques et de la réduction de la dimension. La nature non

stationnaire des signaux sEMG favorise les transformations temps-fréquence, qui pro-

duisent à leur tour un espace de caractéristiques à haute dimension. Ces espaces de

caractéristiques à haute dimension requièrent des méthodes de réduction de dimension

efficaces qui améliorent les performances de classification. Les principaux objectifs

peuvent être résumés comme suit :

• Comparer les méthodes d’extraction de caractéristiques connues dans la littérature

dans le domaine de la reconnaissance des gestes de la main.

• Étendre l’état de l’art des transformées temps-fréquence (TF) utilisées dans ce

domaine en introduisant de nouvelles méthodes.

• Étendre l’étude sur les méthodes non linéaires de réduction de dimension (DR),

en comparant les méthodes utilisées et en appliquant de nouvelles méthodes dans

ce domaine.

• Améliorer les méthodes non linéaires de réduction de dimension en trouvant de

meilleures mesures de similarité et en améliorant leurs performances.

• Appliquer et comparer toutes ces combinaisons de méthodes sur le même ensem-

ble de données sEMG. Donner une vue d’ensemble des différentes combinaisons

avec une comparaison équitable afin d’aider les chercheurs dans ce secteur.

• Application d’un réseau d’apprentissage profond de haute performance avec les

caractéristiques de la TF et comparer avec les autres combinaisons.

1.2.5 Cette thèse

Dans cette thèse, nous suivrons la structure suivante :

• Dans le chapitre 2, nous donnerons un aperçu de l’état de l’art concernant la

classification sEMG pour les mouvements de la main, les méthodes connues

d’extraction de caractéristiques, de réduction de dimension et de classification,

ainsi que les solutions industrielles disponibles pour la prothèse.

• Le chapitre 3 présente le contexte théorique des méthodes utilisées pour l’extraction

des caractéristiques temps-fréquence et les méthodes de réduction des dimensions

linéaires/non linéaires. Certaines de ces méthodes sont utilisées dans la littérature

et d’autres sont nouvellement appliquées dans ce domaine.

12



• Le chapitre 4 explique le processus d’application de la combinaison des méthodes

présentées au chapitre 3, en commençant par les données utilisées et en ter-

minant par les résultats de classification obtenus à l’aide de ces combinaisons

de méthodes et d’une comparaison approfondie. Nous présentons ensuite les

améliorations que nous avons apportées à l’état de l’art dans ce domaine. Nous

expliquons les nouvelles méthodes que nous avons utilisées et les améliorations

que nous avons apportées à ces méthodes aux stades de l’extraction des car-

actéristiques et de la réduction des dimensions. Nous procédons ensuite à des

expérimentations sur différents types de bases de données. Nous testons nos

méthodes sur des données sEMG d’amputés, puis nous augmentons le nombre

de mouvements dans notre expérimentation. Enfin, nous testons nos méthodes

sur des signaux sEMG enregistrés localement par notre équipe partenaire.

• Le chapitre 5 présente la conclusion finale, les grandes lignes de la recherche et

les travaux futurs proposés.

Les travaux de cette thèse ont permis de publier un article dans le journal ”Expert

Systems with Applications (2022)” [28]. Dans cet article, plusieurs combinaisons de

méthodes d’extraction de caractéristiques temps-fréquence (TF) et de réduction de di-

mension (DR) ont été comparées. Des méthodes telles que la transformée orthonormée

discrète de Stockwell (DOST) et l’échelle multidimensionnelle (MDS) sont appliquées

pour la première fois aux signaux sEMG, avec des résultats prometteurs pour la DOST

et une réduction significative de la charge de calcul. Les résultats de cet article de re-

vue sont présentés dans la section 4.2. Deux articles de conférence ont également été

publiés, le premier dans BIOSIGNALS (2020) [29], qui était un travail préliminaire

pour l’article précédent. Le second article a été publié lors de la 30e conférence eu-

ropéenne sur le traitement du signal (EUSIPCO) [30], dans lequel nous avons pro-

posé la version généralisée de DOST (GDOST) avec une méthode améliorée de mise à

l’échelle multidimensionnelle (MDS). Ces résultats ont également été publiés lors de la

conférence française sur le traitement du signal (GRETSI) [31] et sont présentés dans

la section 4.3.
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CHAPTER 2

LITERATURE REVIEW

This chapter starts with a summary of some existing prosthetic industry solutions. Then

it provides an overview of the relevant literature with state of the art and the well-known

methods in sEMG signal processing and classification. First, we introduce the general

workflow for sEMG classification, then for each step, we introduce the methods used.

We start from the sEMG acquisition, windowing, then the key parts of feature engineer-

ing and dimension reduction where we cover the used methods with their results based

on recent studies in the field. We gathered the referenced studies with key information

in the table 2.2 to give the reader a clear overview about the related studies. Then, we

go through the deep learning approaches, which is also applied in this area, and explore

some studies to get an overall image of the studies’ main approaches.

2.1 Commercially-Available Prosthesis

The human hand has the ability to physically interact with the surrounding environment.

It allows the person to perform a lot of various tasks both that need power or precision,

besides to the different kind of sensing in the hand as pressure and heat which provide

the feedback and feeling of this interaction. The sophisticated control and movement

comes from the number of 21 DOFs for the hand and 6 for the wrist and the paramount

role played by thumb opposition [32].

There were big steps done in the prosthetic technology recently, but the upper limb

prostheses still have unsolved limitations. One of the main engineering challenges in the

development of prosthetic devices is to embed actuators, sensors and electronic compo-

nents into a prosthesis of the same size and weight of the replaced hand or limb. In the

same time, the prosthesis should be improved to be able to perform more functionality.

Another limitation that affects users’ acceptance is the extensive amount of the required
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training [32]. In figure 2.1, we can see a standard design of the hand prosthetic with the

main parts. The main requirements of the prosthetic are the real time response, learning

required time, accuracy, robust and simultaneous control of multiple DOFs in a natu-

ral and intuitive manner and bidirectional communication with the peripheral nervous

system.

Fig. 2.1 Typical prosthetic parts [33].

The development of prosthesis produced some high-performance anthropomorphic

prosthetic hands, with a high DOFs number, which can allow more functionalities and

a higher potential if controlled by a pattern-recognition-based system. The high-end

commercial myoelectric hands are the following: Bebionic, Hero Arm, i-limb ultra

revolution, LUKE Arm (radial configuration), Michelangelo Hand, TASKA Hand, and

VINCENT evolution 3 [34].

In 2007, the i-LIMB series developed by the UK-based company Touch Bionics

introduced the first bionic hand with commercial value in the world. In 2013, the Ger-

man company Ottobock developed the Bebionic prosthetic hand, which is based on the

skeleton of the human hand and can support 14 different precise grasping movements.

In 2009, a “revolutionary prosthesis” project jointly conducted by Johns Hopkins Uni-

versity and more than 30 other scientific research institutions successfully developed the

Modular Prosthetic Limb (MPL) prosthetic hand. In 2013, this prosthetic hand was ap-

plied to a volunteer who had lost both arms by means of targeted muscle reinnervation,

and 30 kinds of upper limb movements completely controlled by the volunteer’s mind

were successfully realized [35]. At present, research on robotic exoskeleton systems

for rehabilitation is still in the exploratory stage, but some basic functions for assist-

ing human movement have already been achieved [35]. In table 2.1, we show most

well-known companies with their state of the art prosthetic products seen from their

commercial websites.
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Table 2.1 List of commercially-available prosthetic hands.

Product Name Manufacturer DOF Number of Grips
Patterns

Bebionic Ottobock 6 14
Hero Arm Open Bionics 6 6
i-limb ultra revolution Össur 6 18
LUKE Arm (Radial
Configuration)

Mobius Bionics 6 6

Michelangelo Hand
with Axon Rotation

Ottobock 4 7

TASKA Hand TASKA Prosthetics 8 23
VINCENT Evolution 3 Vincent Systems 6 14

The industry shows the need of prostheses improvements regarding the ability to

identify more movements with maintaining the accuracy and robustness, which requires

more improvements in the sEMG pattern recognition.

2.2 sEMG Classification Work Flow

The sEMG classification follows the known approach of most machine learning algo-

rithms by performing features extraction, dimension reduction and classification. Deal-

ing with special kind of electrical signals as sEMG will add more steps regarding the

acquisition of these biological signals in a way that reduces the noises and contains

more informative patterns about the movements. In addition to that, the limitation of

the response time in prosthetic applications requires a proper windowing that allows the

system to classify the intended movements in a certain time range. The use of sEMG

signals in controlling the prosthesis could be divided into four main steps as depicted in

figure 2.2:

• Acquisition: The process of recording the sEMG signals.

• Windowing: Dividing the collected signals into windows.

• Feature Engineering: The process of extracting features and reducing the dimen-

sion of feature space if needed.

• Classification: Feeding the final features into a classifier to select the related class.

The workflow is common between all sEMG-based prosthetic control system, but the

methods and tools used in each step vary a lot as we will see in the literature overview.

2.3 sEMG Acquisition

The sEMG signals are recorded in a non-invasive technique using special electrodes

which are placed on the surface of the skin. These electrodes measure the electrical
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Fig. 2.2 Movement classification workflow.

activity of the muscles by forming a chemical equilibrium between the detecting sur-

face and the skin of the body through electrolytic conduction, so that current can flow

into the electrode [36]. The non-invasive EMG measurement provides a simple way to

record with no need for needles as in the invasive way of measurement, but placing all

electrodes on the skin leads to crosstalk noise coming from other muscles. To overcome

this problem, the subjects usually are asked to take a comfortable stable position which

minimize the possibility of moving other muscles during the acquisition. The protocol

of recording differs a lot between type of recorded movements, number of repetition,

time of muscle contraction, time of the rest, the acquisition kit used, and so on [12].

The sEMG acquisition system contains four steps:

• Signal recording: The challenge in sEMG signals recording is to choose the best

placement of the electrodes in a way that targets the muscles which participate in

the movements without picking signals from irrelevant muscles [37]. The elec-

trical view is highly dependent on where the electrode is overlying the muscle

of interest, which is based on the movements themselves. Since electrode place-

ment determines the electrical view of a muscle, then it is important in EMG

measurements to be consistent in the placement of the electrodes for a subject

over consecutive recording sessions and between different subjects [38]. Another

research [39] showed the relation between the type of hand movements and the

recommended electrodes placement, where they grouped the movements by the

muscles involved. The used electrodes could be one of two types, gelled or dry.

The gel is used to minimize the electrical noise but they need skin preparation as

skin cleaning and hair removal. The dry electrodes on the other hand have direct

contact with the skin and usually contain integrated amplification and filtering to

improve the signal quality.

The number of the electrodes can follow two strategies:

– Low Density (LD): by placing more than two electrodes on the arm, and

usually they are placed as a ring on the arm and the number of electrodes

could be between 2 and 16 [27, 40, 41].

– High density (HD): this uses array of closely placed sEMG electrodes [17].

This could be useful for recognition of complex movements but creates a

complexity in dealing with a large number of sEMG signals.
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The LD strategy is usually sufficient for a successful movements’ pattern recogni-

tion. Some studies showed that increasing the number of electrodes will increase

the accuracy until a certain point and starts to decrease again [42, 43].

• Signal amplification: The EMG signals are usually amplified by factor 1000 for

better interacting with common electronic instrumentation [44]

• Signal filtering: Filters are important to overcome the noise in sEMG signals,

and usually a low pass filter of 500 Hz and a high pass filter of 20 Hz are used

to reduce the motion artifacts [45]. Another used filter is the notch filter with

50 Hz center frequency to remove the distortion common noise that comes from

the tissue and skin electrodes resistance [46].

• Analog-to-digital converting: The frequency band of sEMG signals could be up

to 500 Hz, that requires a sampling rate at least 1000 Hz following Nyquist The-

orem [44].

2.4 Windowing

The windowing is the process of dividing the signal stream into windows in fixed length

before starting to extract features of these windows. In order to get real-time feeling

response, a constraint should be set on the window length. The studies show that to keep

the feeling of real time response in the prosthetic, the movement should be executed

within 300 ms [22]. This time constraint includes the window length and the time

required to identify the movement. A trade-off between the accuracy and the response

time should be made in choosing the window length. A bigger window means less bias

and variance of features but more delay in prosthetic response.

2.5 Feature Extraction

The success of any pattern recognition system is entirely based on the features that rep-

resents each observation. Feature extraction involves transforming raw sEMG data into

a feature vector that is used to represent specific movement. Several features extractions

methods were studied in this area which can be divided into three major domains: time

domain, frequency domain, and time-frequency domain.

2.5.1 Time Domain

The Time Domain (TD) features are calculated directly from the time series values.

These features are simple to calculate and convenient in their results, which makes

them very popular in sEMG pattern recognition. Nevertheless, they are very sensible to
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the noise and artifacts, besides to their dependency on the signals amplitude which is

also highly affected by physical attributes of the muscles [47]. Let us consider a signal

x ∈ RN , there are several well-known TD features which are used for sEMG signal

pattern recognition such as Mean Absolute Value (MAV):

MAV (x) =
1

N

N∑
n=1

∣∣xn| (2.1)

Besides to the MAV, one of the common used attribute for the stochastic signal is

the Variance (VAR), which is the measure of the sEMG signal’s power:

V AR(x) =
1

N − 1

N∑
n=1

(xn − x̄)2 (2.2)

Where x̄ is the mean of x.

Another TD attribute is the Simple Squared Integration (SSI) which describes the

energy of sEMG, and calculated as a summation of the square of values of the signal:

SSI(x) =
N∑

n=1

xn
2 (2.3)

The Root Mean Squared value (RMS) is another important TD feature which corre-

lates to the force applied in the muscle:

RMS(x) =

√√√√ 1

N

N∑
n=1

xn
2 (2.4)

The number of times that the signal cross zero value is called zero-crossing feature.

This count is usually combined with a threshold to consider only the activity that is

triggered by the muscle [48]:

ZC =
N−1∑
n=1

fZC(xn, xn+1), fZC(xn, xn+1) =

1, xn × xn+1 < 0

0, otherwise
(2.5)

The wavelength (WL) is the distance between consecutive corresponding points of the

same phase on the wave, such as two adjacent samples:

WL =
N−1∑
n=1

∣∣xn+1 − xn| (2.6)

The Slope Sign Change (SSC) is the number of times the slope of the signal changes
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its sign. This attribute is related to the frequency of the signal and a threshold is added

to its calculation to reduce the effect of the noise in the signal [49]:

SSC =
N−1∑
n=2

f((xn − xn−1)× (xn − xn+1)), f(x) =

1, x > threshold

0, otherwise
(2.7)

The number of times that the signal exceeds a threshold is called the Willison Am-

plitude (WAMP). This feature is an indicator to the quantity of the motor unit action

potential [49]:

WAMP =
1

N

N∑
n=1

f(
∣∣xn|), f(x) =

1, x > threshold

0, otherwise
(2.8)

The most common combinations are found in Hudgin’s feature vector [50], which

consists of the MAV, the WL, ZC, and SSC. Hudgin’s feature vector yields a relatively

high classification accuracy, and is not very dependent on the chosen length of the

segment, besides to the advantages of stability in results and low computation time [50,

51]. In [52], Hudgin’s feature vector was used and fed to a Support Vector Machine

(SVM) classifier (5 classes and 4 channels) and the resulting accuracy was 96%. Note

that in this case, the high classification accuracy must be tempered by the relatively low

number of classes.

In a different study [53], features of the sixth-order autoregressive model was added

to Hudgin’s feature vector, with a Linear Discriminant Analysis (LDA) as a classifier.

In this study sEMG signals were recorded on 15 channels, the results of using these fea-

tures were varied based on the number of classes (movements), where it was 81.0% for

29 classes, and 88.8% for 17 classes, up to 97% for 9 classes. Another study [54] used

high-density sEMG signals, by recording sEMG signals of the forearm using an array

of 192 electrodes. RMS values were used as a feature for each signal, and an average

of 95% of classification rate for 9 classes is reached with a SVM classifier. In a recent

study [55], the most popular time domain features were tested with different classifiers,

these features are: RMS, VAR, MAV, SSC, ZC, WL. These features were taken for 10

hand gestures recorded by 3 channels and tested on four different classifiers: Artifi-

cial Neural Network (ANN), SVM with Radial Basis Function (RBF) kernel, Random

Forest (RF) and Logistic Regression (LR). These traditional TD features showed bet-

ter accuracy when used with ANN classifier with 94% accuracy, and 87% for SVM.

Despite the fact that TD features are simple to compute and could perform well for

prosthetic with a few degrees of freedom (i.e. less classes), the nature of sEMG sig-

nals and its non-stationary characteristic make the TD features limited to capture the

intrinsic features of the sEMG signals.
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2.5.2 Frequency Domain

Frequency Domain (FD) features could be used to measure the tiredness in the muscle,

force and changes in muscle activation patterns [47]. Using FD features alone in move-

ment pattern recognition has not given good results compared to TD features which

outperformed the frequency features and were more stable [47]. In [56] FD features

alone were tested, which are Mean Frequency (MNF), Median Frequency (MDF), 1st,

2nd and 3rd spectral moments and frequency ratio. In this study, the FD features clas-

sification accuracy was between 75-85% where most of the used TD features accuracy

was more than 85% for the classification of six upper limb movements applied on the

same dataset. However, combining FD features with TD features could lead to more

robust classification than TD features. Two studies [57, 58] appended the mean and

median frequency to TD features, which increased the robustness of the classification.

Different sets of features in noisy environment were tested in [58] and it was approved

that by appending these two FD features, the error rate decreased from 20% to 5-10%

for six upper limb motions. Another successful usage of TD features with FD features

was in [59], where the following TD features were used: MAV, WAMP, VAR, and WL

together with FD features: MDF and MNF. These mixed set of features were tested on

6 different hand gestures recorded on 4 channels, and the result was 97% accuracy us-

ing k-Nearest Neighbors (KNN) as classifier. Different set of TD and FD features were

used together in another study [60], the features were RMS, WL and sample entropy

as TD, besides to Median Amplitude Spectrum (MAS) as FD feature. The accuracy of

the classification was 95% for 9 hand gestures recorded on 9 channels, where in this

study a General Regression Neural Network (GRNN) classifier were used. The com-

bined TD and FD features are giving better results than TD features although they are

extracted separately without looking to their potential relation, which leads to next type

of features time-frequency domain features.

2.5.3 Time-Frequency Domain

Time-Frequency Domain (TFD) features contains the combination of temporal and fre-

quency information. They present the sEMG signals more accurately because they lies

in a time-frequency plane; therefore they could show how the frequency of the signal

varies in time. This advantage is very useful in non-stationary signals as sEMG.

Several time-frequency methods were used in the state of the art. Short Time Fourier

Transform (STFT) [61] is a widely used time-frequency method. The signal is divided

into time segments by a fixed-size window, then these segments are converted into spec-

tral ranges. STFT was successfully used to extract intrinsic features of the movement

identification, and led to high classification rate in case of large training data. In [62],

STFT was used with Principal Component Analysis (PCA) as a linear dimension re-
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duction method and Diffusion Maps (DM) as non-linear. The average accuracy of clas-

sification of six hand motions was of 94.8% for PCA and 88.0% for the DM. However,

the STFT may be limited as time-frequency resolution for some non-stationary signals,

where we need to adapt the resolution of the analyzing window over the frequency of

the signal.

The Wavelet Transform (WT) overcomes the shortcoming of the frequency-invariant

window in the STFT. The WT changes as the frequency varies by scaling the mother

wavelet. When the frequency in the signal increases, the WT increases the resolution

by narrowing the used wavelet. In [63] Myo armband was used to collect sEMG sig-

nals, these signals were filtered and sampled, then Continuous WT (CWT) was selected

to obtain the signal spectrum, and the neural network model was applied to classify

the spectrum to achieve gesture recognition. This study compared CWT with the TD

features in [64] and proved that CWT outperforms TD features by testing on differ-

ent datasets. In [65] Discrete WT (DWT) was proven to provide sufficient information

about the signal, with big improvement in the calculation time compared to STFT. An-

other study [66] used Ternary Pattern DWT with 2-layered feature selection method and

conventional classifiers. The methods were tested on different force levels of sEMG sig-

nals: low, medium and high. By applying these methods on sEMG signals containing

six grip patterns; they achieved 92.96%, 93.33%, 97.41% and 99.14% classification

accuracy for high, medium, low and all force levels respectively.

The Stockwell Transform (ST) is a time-frequency analysis method which is a kind

of multi-resolution version of the STFT form. This method uses Gaussian window as a

kernel window that changes its standard deviation by frequency [67]. Unlike the WT,

the ST holds the information about the signal phase as in the Fourier transform. A

recent study [68] shows that ST features overcomes wavelet packet transform features

for sEMG classification. This study used the symmlet mother wavelet of order five as

the wavelet packet basis function and the number of the wavelet decomposition levels

was three. The ST achieved 98.12% of average accuracy for six hand motions while

wavelet packet transform achieved 97.61% [68].

Time-frequency features were proved to have essential information about the sEMG

signals [69, 62], but on the other hand they produce a high-dimensional feature vector.

Hence using all the features would be numerically intractable and weakly relevant to

the classification; therefore, it is mandatory to perform a dimension reduction on these

features.

2.6 Dimension Reduction

The dimensionality reduction methods aim to represent the feature space into a lower-

dimensional space while keeping most meaningful characteristics of the original data
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points of the space.

The dimension reduction becomes an essential part when dealing with TF features

because of their high-dimensional space. Usually, the discriminant characteristics of

the signals could be presented in lower dimensional space. This dimensional reduc-

tion makes it easier and faster to operate classification and more importantly, it helps

avoiding over-fitting.

A widely-used dimension reduction technique is PCA [70] as a linear dimension

reduction method. In [71] PCA was applied to reduce dimension of the wavelet packet

transform features, and the final classification accuracy result was 96% accuracy on 9

different classes. Dimension reduction has been notably generalized since the intro-

duction of non-linear techniques, which do not assume the low-dimensional space to

be Euclidean. The study [62] compared PCA and Diffusion Maps (DM), when applied

on STFT features. This study concluded that DM outperforms PCA when less training

data is available. This point is important, as the training effort is one of the challenges

that faces prostheses development. Another study [72] shows how the features’ dimen-

sion reduction process can improve the classification of sEMG in armband acquisition

approach. The following dimensional reduction techniques were used on a set of TD

and FD features: PCA, LDA, Isomap, Manifold Charting, Autoencoder, t-distributed

Stochastic Neighbor Embedding, and Large Margin Nearest Neighbor (LMNN). This

study found that, with respect to several other dimension reduction techniques, the best

results in this study were obtained by using LMNN and a SVM classifier with 94%

accuracy for six wrist movements acquired from an 8-channel armband.

2.7 Classification

Regarding the classification step, several methods were used to classify sEMG signals

as k-Nearest Neighbors (k-NN) [73, 74], LDA [53, 74], SVM [52, 54] and Neural net-

works (NN) [75, 76]. A study [77] made a comparison between k-NN and SVM when

applied on the TF features of sEMG signals. Both methods performed well on these

kind of features with better accuracy score for k-NN. For 15 fingers’ motions, k-NN

with PCA had average accuracy of 93.76% while SVM with PCA had 88.88%.

2.8 Deep Learning

Although the classic approach of feature engineering and searching for the best features

that carry intrinsic properties of the movements is dominant in sEMG pattern recogni-

tion, the feature learning as exemplified by deep learning started to be applied success-

fully in this area. In Deep Learning (DL), the machine learning system automatically

discovers and extract the features needed by the classifier. Deep learning algorithms
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started only recently to be applied for sEMG due to the need of a large dataset for train-

ing. The deep learning machine learning systems consists of networks which have many

hidden connected layers inside with many neurons forming elementary units. This kind

of neural networks structures have millions of parameters to be adjusted in order to get

good pattern recognition performance. This creates another kind of challenges consider-

ing the computation issues that require GPU-based implementation and optimized deep

learning models, besides to the need of large training sEMG data [78]. The application

of deep learning in sEMG is relatively new, the main types of deep learning models

are already used, namely: Unsupervised Pre-Trained Networks (UPNs), Convolutional

Neural Networks (CNN), and Recurrent Neural Networks (RNN) [78].

Deep Belief Networks (DBN) as kind of UPNs is already used in sEMG pattern

recognition. In [79] a DBN was used to classify 5 wrist movements recorded by two

channels, the input of this deep learning system was 5 time-domain features, namely:

Difference Absolute Mean Value (DAMV), Absolute Standard Deviation of Difference

(ASDD), MAV, ZC. The results showed that the DBN accuracy was 88.60%, which

was 7.55% higher than LDA and 2.89% higher than SVM. In another study [80], the

ST transform was used to calculate the spectrogram of four channels raw sEMG sig-

nals, then the eigenvalues of these spectrograms were calculated using Singular Value

Decomposition (SVD). These eigenvalues were used as features for 9 hand gesture fea-

tures and fed into the DBN for classification. The overall classification accuracy using

this method was 93.33%.

Another kind of deep learning is the CNN (or ConvNet), which is relatively widely

used for sEMG pattern recognition compared to other models. CNN are quite similar

to ordinary neural networks but make an assumption that the inputs are image-based.

This assumption adds constraints to the model as the neurons should be arranged in

three dimensions [78]. In [81], sEMG signals of 3 hand gestures were recorded us-

ing 8 channels with 1000 Hz sampling rate. A window of 8-channels sEMG raw data

was used as an input for CNN as 128x8 input data. The final average accuracy was

94.6%. A different study [82] used a convolutional network with three parts, segmen-

tation, feature extraction and classifier, and evaluated their architecture on DB2 from

the Non-Invasive Adaptive Hand Prosthetics (NinaPro) database on 17 different hand

gestures. The accuracy of their classification was 83%, which showed improvements

when compared to classical classifiers SVM and RF with four TD features (MAV, WL,

ZC, and HIST) and one feature (mDWT) from time-frequency domain. CNN is used in

another work [83], where Hilbert fractal curve is employed to transform multi-channel

sEMG signals into 2D image representations. In this study the authors applied their

methods on Ninapro DB1 [84] by taking 52 movements recorded on 10 channels by

sampling rate 2 KHz. The study applied different structures of CNN and proposed a
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multi-scale Hilbert network, which achieved 78% average accuracy rate with the op-

timal values for the hyper-parameters. In [63], different deep learning CNN models

were applied. The methods were applied on Ninapro DB5 dataset [85] with 23 different

movements (including neutral) recorded by two Myo armbands with 200 Hz sampling

rate. Both CNN Long Short-Term Memory Networks (CNN-LSTM), Lookup-based

Convolutional Neural Network (LCNN) models were used with raw sEMG data as di-

rect input and scored 61%, 66% respectively, while CWT transform was used as input

proposed EMGNet model which has CNN architecture consisting of four convolutional

layers and a max pooling layer with a compact structure and fewer parameters. That

method increased the accuracy to 69.6%.

RNNs have connections that feed back into prior layers, giving ability to have in-

formation from the previous input. LSTM units and gated recurrent Units (GRUs) are

two of the prevailing RNN architectures. In [86] authors combined LSTM network with

multi-layer perceptron so they combine both the dynamic and static information of the

sEMG signals in feature learning. This approach was evaluated on Ninapro database

including 52 hand motions and achieved accuracy of 75% on 400ms segment window

and 73% on 200ms segment window.

Time domain and time-frequency domain was used as input in [87] with propos-

ing to use the Transfer Learning (TL) algorithm which aggregate the data of multiple

individuals instead of recording thousands of windows from a single subject. The TL

is important in the case of deep learning because of the large amount of the needed

training data. the authors used two different ConvNet: one for the raw sEMG data as

input and another for CWT. Both ConvNet models were tested on Ninapro DB5 (18

hand/wrist gestures) and using transfer learning. The augmented TL-ConvNet model

with raw sEMG as input has the highest accuracy of 68.98%.

Although the Deep learning technology yields promising results, it still needs an

equivalent development in the embedded devices that make it possible to run it in a

prosthetic, besides to the lack of big sEMG database that is enough to build and train

robust deep learning based model [78].

2.9 Methods Overview

We can get an overall overview about the methods combinations in the literature by

looking at the table 2.2. We see in general that the TF features perform better than

the TD features especially with the increment of the movement number, where also

the deep learning combined with the TF features gives a promising results. A lot of

possible combinations are used and evaluated with different number of movements and

channels, different sampling frequency and different classifiers. This big variety makes

it impossible to compare these methods and get a clear conclusion about their perfor-
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mance when applied under the same conditions. In our work, we aim to do an extensive

comparison and research in the TF features and the ways to improve both feature ex-

traction and dimensional reduction methods.

Table 2.2: List of related studies ordered by features type. DB: database used in the

corresponding study, SR: sampling rate of the sEMG signals.

[52] 2008 TD Own 1000

- gestures: 5 limb motions

- channels: 4

- features: MAV + WL + ZC + SSC

- classifier: SVM

- accuracy: 96%

[54] 2011 TD Own 2000

- gestures: 9

- channels: (HD) 192

- features: RMS

- classifier: SVM

- accuracy: 95%

[53] 2014 TD Own 1000

- gestures: 29 / 17 / 9

- channels: 15

- features: 6AR + MAV + WL +

ZC + SSC

- classifier: LDA

- accuracy: 81% / 89% / 97%

[55] 2022 TD Own 2000

- gestures: 10

- channels: 3

- features: RMS, VAR, MAV, SSC,

ZC, WL

- classifier: LDA

- accuracy: 94% / 87%

[56] 2012 FD Own 1000

- gestures: 6

- channels: 5

- features: MDF / SM1 / MNF

- classifier: ANN / SVM

- accuracy: 70% / 80% / 75%

Ref Year Features DB SR
(Hz)

Key Points

Continued on next page
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Table 2.2: List of related studies ordered by features type. DB: database used in the

corresponding study, SR: sampling rate of the sEMG signals. (Continued)

[59] 2020 TD + FD Own 2000

- gestures: 6

- channels: 4

- features: (MAV, WAMP, VAR, WL) +

(MDF, MNF)

- classifier: KNN

- accuracy: 97%

[60] 2020 TD + FD Own 1000

- gestures: 9

- channels: 16

- features: (RMS, WL, sampleEN) +

(MAS)

- classifier: GRNN NN

- accuracy: 95%

[68] 2019 TFD Own 1000

- gestures: 6

- channels: 2

- features: ST / wavelet packet transform

- classifier: ANN

- accuracy: 98% / 97%

[62] 2020 TFD
UCI

[88]
500

- gestures: 6

- channels: 2

- features: STFT

- classifier: KNN

- dimension reduction: PCA / DM

- accuracy: 95% / 88%

[63] 2020 TFD Own 200

- gestures: 5

- channels: 8

- features: CWT

- classifier: CNN

- accuracy: 98%

Ref Year Features DB SR
(Hz)

Key Points

Continued on next page
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Table 2.2: List of related studies ordered by features type. DB: database used in the

corresponding study, SR: sampling rate of the sEMG signals. (Continued)

[66] 2020 TFD Own 2000

- gestures: 6 (high / moderate force)

- channels: 8

- features: TP-DWT

- classifier: KNN

- accuracy: 93% / 99%

[79] 2015 Learned Own 2000

- gestures: 5

- channels: 2

- input: (DAMV, DASDV, MAV, ZC)

- model: DBN

- accuracy: 88.60%

[81] 2018 Learned Own 1000

- gestures: 3

- channels: 8

- input: raw sEMG

- model: CNN

- accuracy: 94.6%

[82] 2018 Learned
Ninapro

DB2

[27]

2000

- gestures: 17

- channels: 12

- input: raw sEMG

- model: CNN

- accuracy: 83%

[86] 2018 Learned
Ninapro

DB1

[84]

2000

- gestures: 52

- channels: 10

- input: raw sEMG

- model: LSTM + MLP

- accuracy: 75%

[87] 2019 Learned
Ninapro

DB5

[85]

200

- gestures: 18

- channels: 8 (one Myo armband)

- input: raw sEMG

- model: ConvNet

- accuracy: 69%

Ref Year Features DB SR
(Hz)

Key Points

Continued on next page
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Table 2.2: List of related studies ordered by features type. DB: database used in the

corresponding study, SR: sampling rate of the sEMG signals. (Continued)

[63] 2020 Learned
Ninapro

DB5

[85]

200

- gestures: 23

- channels: 16

- input: raw sEMG / CWT

- model: LCNN

- accuracy: 66% / 69.6%

[83] 2021 Learned
Ninapro

DB1

[84]

2000

- gestures: 52

- channels: 10

- input: Hilbert fractal curve

- model: CNN

- accuracy: 78%

[80] 2021 Learned Own 2000

- gestures: 9

- channels: 4

- input: ST

- model: DBN

- accuracy: 93.33%

Ref Year Features DB SR
(Hz)

Key Points

2.10 Literature Review Recap

The literature overview shows that the prosthetic control systems still lack a lot of de-

velopment to be accepted widely by people who need it. Although this development

include all phases such as the sensors, sEMG acquisition, prosthetic design, natural

movement and so on, the core challenge is still in the ability of the device to identify

the intended movement from the sEMG signals. The literature shows that the TF fea-

tures are superior features that could describe the characteristics of the sEMG signal

due to its nature, but that would arise another problem of the needed real-time response

and extensive training needed, which are both essential requirements in the prosthetic

acceptance for the users. We focus in our research on extending the studies made on the

TF features and improving the state of the art in both features extraction and dimension

reduction methods with the aim to solve the related challenges of accuracy, training

size, computation time problems.

In the next chapter we will explain the existing methods in the literature that we

adapted and perform an extended comparison between them with multiple combinations

of feature extraction, dimension reduction and classification methods.
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CHAPTER 3

THEORETICAL BACKGROUND

We saw in the related work that Time-Frequency (TF) features and dimension reduction

play an essential part in sEMG classification. The most promising features are the TF

features; nevertheless, they still have challenges to be solved like accuracy improve-

ment, computation time and training size. The promising results achieved by using TF

features comes from the non-stationary nature of the sEMG signals, which promotes

the change in frequency over the time as an informative characteristics. The ability of

these features to properly describe the patterns and distinguish between sEMG signals

encouraged us to extend this research area. So far, the performance of different TF

methods with different dimension reduction techniques and different classifiers have

not been tested properly under the same conditions in the literature. The importance

of these features motivated us to do an extended comparison between a wide range of

combinations in different classification stages, and to improve the methods themselves

in order to gain better accuracy.

The usage of TF features leads also to extended research in the DR methods as

these feature extraction methods would create high-dimension features space, and this

dimension should be effectively reduced in order to obtain a better classification.

The starting point of any ML system is the data source which could provide suffi-

cient data for training and evaluating. Next in this chapter, we will describe some of

the available databases to evaluate our methods, after that, we will explain the methods

we used in the sEMG features extraction, then we will explain the dimension reduction

techniques that we applied in our research.
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3.1 sEMG Data Sources

3.1.1 Analytical Modelling of sEMG Signals

The simulation models of signals could be very helpful for testing the performance of

new developed systems before experimenting on real data. The simulation is however

very complicated for signals as sEMG which depend on a large number of anatomi-

cal and physiological parameters. EMG signals are the summation of individual action

potentials generated from Motor Units (MUs) as shown in figure 3.1. Each muscle

contains a lot of fibers which acts as motor units. The overall generated EMG signal

is the summation of contributions form many motor units inside the muscle, and even

using electrodes on the surface of the skin will collect these motor activities from mul-

tiple muscles [89]. There are several variables that are used to describe the state of the

muscle such as the intensity and power spectrum, the RMS, MDF, MNF of the power

spectral density [90]. These variables are used in sEMG modeling to make simulated

stochastic process related to the underlying physiological and anatomical parameters in

the muscle.

Fig. 3.1 sEMG generation from MUs model [89].

Many sEMG simulation methods modelled the stochastic properties of EMG signals

following a Gaussian distribution [91, 92]. The EMG signals do not follow a steady

Gaussian distribution as some studies declared [93, 94], and another study showed

that sEMG probability distribution falls between a Gaussian and a Laplacian distri-

bution [95]. The sEMG models are very useful in many applications, but these mod-
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els are still under research to improve the acceptance, precision and ability to reflect

more anatomical or physiological parameters more than muscle-fibre conduction veloc-

ity [90].

3.1.2 ZHAW School’s Pilot sEMG Data

A partner team from ZHAW School of Health Sciences in Zurich (Switzerland) started

to create a new sEMG database. They made the first pilot data, and we used our meth-

ods to make initial evaluation for this recorded signals. This dataset consists of move-

ments that are performed by two hands, and the electrodes were places on both arms.

The participant of the pilot was right-handed, the number of movements was 4 and the

channels number was 16. The signals were sampled with sampling frequency 1200Hz.

The movements performed are shown in figure 3.2:

1. Open a bottle.

2. Pour water from a jug into a glass.

3. Cut bread.

4. Cut meat.

Fig. 3.2 The movements in the ZHAW school’s database.

The movements were repeated by the subject 15 times. Each repetition lasts for

10s. More details about the protocol of acquisition are shown in the appendix A. We

will use this pilot dataset to extend our numerical experiments in chapter 4 on different
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data sources, which improves our concept and used methods, besides to providing a

feedback for our partner team to proceed with their database creation.

3.1.3 Public Database

There are different publicly available databases that enable researchers to evaluate their

methods on sEMG signals. One of the biggest and well-known sEMG database is Ni-

napro [96]. This database contains well annotated signals is open for public use, which

made it widely used in this kind of researches. The Ninapro project first dataset was

available for public in 2014 [96]. Currently, the Ninapro database includes 8 datasets

containing surface EMG signals from the forearm and upper arm using 10–16 EMG

channels together, in addition to 2 datasets contain kinematic data of the upper arm. In

chapter 4, in our numerical experiments, we will use Ninapro database to test our meth-

ods. We will use both intact and amputees subjects and different number of movements

taken from this database.

The Ninapro database contains more than 60 movements for hand and fingers. These

movements data were recorded on 142 intact people and 15 amputees, with all related

data as weight, age, left or right handed, height. The sEMG signals in Ninapro are

recorded using different kind of sensors with different sampling rates. In table 3.1, we

can see the list of the available data sets in Ninapro and the properties of each one of

them.
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Table 3.1 List of Ninapro datasets with their specifications.

N◦ Channels Sampling rate Moves Subjects Information

1 10 100 Hz 52 27 intact

- Each movement repetition
lasts 5s followed by 3s of rest
- 10 repetition for each movement
- Otto Bock MyoBock 13E200
electrodes

2 12 2 kHz 49 40 intact

- Each movement repetition
lasts 5s followed by 3s of rest
- 6 repetitions for each movement
- Wireless electrodes from a Delsys
Trigno Wireless EMG system

3 12 2 kHz 49 11 amputee

- Each movement repetition
lasts 5s followed by 3s of rest
- 6 repetitions for each movement
- Wireless electrodes from a Delsys
Trigno Wireless EMG system

4 12 2 kHz 52 10 intact

- Each movement repetition
lasts 5s followed by 3s of rest
- 6 repetitions for each movement
- Wireless electrodes from a Cometa

5 16 200 Hz 52 10 intact

- Each movement repetition
lasts 5s followed by 3s of rest
- 6 repetitions for each movement
- 2 Thalmic Myo armbands

6 14 2 kHz 7 9 intact

- Each movement repetition
lasts 4s followed by 4s of rest
- 12 repetitions for each movement
- Wireless electrodes from a Delsys
Trigno Wireless EMG system

7 12 2 kHz 40
20 intact
2 amputee

- Each movement repetition
lasts 5s followed by 3s of rest
- 6 repetitions for each movement
- Wireless electrodes from a Delsys
Trigno Wireless EMG system

8 16 2 kHz 9
10 intact
2 amputee

- Each movement repetition
lasts 6s to 9s followed by 3s of rest
- 10 repetitions for each movement
- Wireless electrodes from a Delsys
Trigno Wireless EMG system
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3.2 Features Extraction

As seen in the literature overview in chapter 2, the main types of features extraction

for sEMG signals could be divided into three main parts: TD, FD and TFD features.

Although the TD features are the most used features for sEMG signals due to their

simplicity and low computation time, they do not preserve the frequency intrinsic char-

acteristics. In the other hand, the Fourier transform of the signal cannot depict how the

frequency of the signal changes over the time, which is a very important description for

the non-stationary signals. TF analysis summarizes analysis techniques that quantify

the temporal evolution of spectral properties of signals; therefore the time-frequency

domain provides a temporal description of the frequency component as a function of

time.

In order to understand the importance of preserving the frequency change over the

time, we look on an example of two linear chirp signals (up-chirp and down-chirp)

shown in figure 3.3a, we see two different kind of chirp signals. In the first signal

(the up-chirp), we have linear increment in the frequency from 0 to 40Hz, while the

frequency decreases in the another signal (the down-chirp) from 40 to 0Hz. Although

these two signals are different signals but the modulus of the Fast Fourier Transform

(FFT) is identical for both as we see in figure 3.3b. This comes from the fact that

Fourier analysis does not preserve the information about the frequency changes over

the time (increment vs decrement in our example). In the other hand, if we look on the

modulus of one of the typical time-frequency transforms as STFT 3.3c, we see clearly

how the frequency varies by time for each signal. This kind of information can carry

distinctive features for each signal.

In this thesis, we applied different time-frequency methods to study the best fea-

tures that describe the sEMG signals and lead to a better classification accuracy. The

following sections will explain in details these methods and the differences between

them. We will enrich the theoretical explanation by applying these methods on chosen

signals, and in all chapters in this thesis, the modulus of the TF coefficients will be used

to show the TF representations.

3.2.1 Short Time Fourier Transform

Short Time Fourier Transform (STFT) divides the signal into smaller segments, in

which we assume that the signal is stationary inside this window. Then we calculates

the Fourier transform on each of them, which shows how the frequency varies in the

time. Let the original signal be x(t) ∈ L2(R), the segmentation is done using a sliding

window g(t) ∈ L2(C) where the Fourier transform is applied in order to obtain the local
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(a) Chirp signals - time domain, Up-chirp to the left, Down-chirp to the right.
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(b) The modulus of the fast Fourier transform of the two chirp signals in (a).
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(c) STFT transform of the two chirp signals in (a).

Fig. 3.3 Up-Chirp and Down-Chirp signals with their FFT and STFT transforms.

spectrum [97] as follows:

Vg(τ, f) =

∫ +∞

−∞
x(t)g(t− τ)e−i2πftdt (3.1)

Where τ ∈ R refers to time and f ∈ R∗ is the frequency.

The STFT formula can also be written as an inner product:

Vg(τ, f) =< x(t), g(t− τ)e−i2πft > (3.2)

The length of the chosen window will determine the trade-off between frequency and

time resolution. The use of narrow window length in time domain will give us a good

temporal resolution but with more blurring in the frequency domain. In the opposite,

using a wider window length will lead to a worse temporal resolution and sharper fre-

quency resolution [98]. In order to understand behaviour and limitation of the STFT
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transform, let us consider a signal x1 which changes its frequency sharply when t = 1:

x1(t) =

{
cos(2πf1t) : t ≤ 1

cos(2πf2t) : t > 1
(3.3)

Where f1 =
100
2π

, and f2 =
400
2π

.

3.2.1.1 Window type and size

In figure 3.4a, we can see the signal x1 in time domain, where it shows how the signal

changes its frequency sharply at some point in the time (at 1s). The type and size of

the chosen window in STFT play an important role in the quality of the spectrograms

energy concentration, i.e., the spread of the energy around instantaneous frequency. In

figure 3.4b, we can see a manual drawing of the ideal representation of the TF, while

if we look on figure 3.4c, we can see two different windows used in STFT which are

the rectangle (to the left) and Hann windows1 (to the right). Note that the windows

introduce some smearing of frequencies in the Fourier domain as well as additional

artifacts, which explains the weaker lines that appears around the main energy line.

These weaker stripes correspond to the ripples occurring in the Fourier transform of the

window function. One can observe that the ripple artifacts are stronger when using a

rectangular window instead of a Hann window. In general, it is not easy to distinguish

the characteristics of the signal and the effects introduced by the window function.

The size of the used window also has an effect on the energy concentration, so a

wide time-domain window implies good localization in the frequency domain for low

frequencies, while a narrow window provides good localization in the time domain for

higher frequencies. If we change the width of Hann window in STFT transform, we

can see the effect on the STFT transform of signal x1 as shown in figure 3.5, where

we see that for narrower window width, we get better time resolution but wider (less

concentrated) frequency values, while using wider window will give better frequency

resolution but with cost of the time resolution and we can see in the figure the sharp

jump in the frequency values (i.e. happens in small time interval) will be blurred with

bigger window width.

3.2.1.2 STFT limitation

The main limitation of the STFT is that it has a fixed temporal resolution. In order to

obtain good concentration at higher frequencies, a narrow window in the time domain

should be used for the STFT. However, the narrow window in the time domain signifi-

cantly diminishes the concentration of the lower frequencies contents of the signal. This

1Hann window is defined as: 1
2 [1− cos(2πt/T )], t ∈ [0, T ]
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(a) Signal x1 in time domain.
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(b) The manual drawing of the ideal TF repre-
sentation of the signal x1.
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(c) STFT for signal x1 when using two different windows, rectangular window to the left, Hann
window to the right.

Fig. 3.4 Effect of using different window types in STFT.
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Fig. 3.5 Effect of using different window widths in STFT with Hann window.

limitation appears in the signals where the frequency changes sharply in high and low

values. To give an example of such signal, we look at signal x2, which is shown in 3.6a:

x2(t) =

{
cos[−20π ln (−20(t− 1) + 1)] : 0 ≤ t < 1

cos[+20π ln (+20(t− 1) + 1)] : t > 1
(3.4)

We apply the STFT transform on this signal using a real Gaussian window with

standard deviation σ:

g(t) =
1

σ
√
2π

e
−t2

2σ2 (3.5)

The figures 3.6(b,c,d,e) show different STFT representations when using different σ

values, and we can see that there is no width value could result in good concentration

in the spectrogram. The fixed window size could be chosen to be suitable for either

high values or low values of frequency, and there is no way in the previous example to

compensate the width to get a better results in both.
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(a) The signal x2 in the time domain.
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(b) STFT of x2 with σ = 0.002.
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(c) STFT of x2 with σ = 0.004.
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(d) STFT of x2 with σ = 0.006.
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(e) STFT of x2 with σ = 0.008.

Fig. 3.6 STFT transform for the signal x2 using different σ values in STFT Gaussian
window.

The intuitive way to overcome this limitation is to use different window sizes in

STFT calculation, which is called multi-resolution analysis. The desirable way would

be to decompose our signal in a way that high frequency components are analyzed with

high temporal resolution (since they vary rapidly in time), and low frequency compo-

nents are analyzed with low temporal resolution.

3.2.2 Continuous Wavelet Transform

The main approach proposed in the Continuous Wavelet Transform (CWT) was to add

a scaling operation to the mother window in STFT. This transform was introduced to

overcome the limitation of the fixed window size in STFT which we discussed in the

previous section. Morlet and Grossman modified the Gabor transform to produce the

continuous wavelet transform by making the width of the window changes according to

the frequency [99].

The CWT uses the inner products to measure the similarity between the signal and

analyzing function, as in the Fourier transform where the anslyzing function is eiwt or in
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the STFT where the analyzing function is g(t)eiwt. In the CWT, the analyzing function

is a wavelet Ψ. The CWT compares the signal to shifted and compressed or stretched

versions of a wavelet. Stretching or compressing a function is collectively referred to

as dilation or scaling and corresponds to the physical notion of scale.

The CWT of a signal x(t) ∈ L2(R) is defined at each time τ and scale a for an

admissible mother wavelet Ψ as follows:

WΨ(τ, a) =
1√
|a|

∫ +∞

−∞
x(t)Ψ

(
(t− τ)

a

)
dt (3.6)

where Ψ(t) and its Fourier transform Ψ̂(f) are satisfying the admissibility condition of

the mother wavelet :

CΨ =

∫ +∞

−∞

|Ψ̂(f)|2

f
df < ∞ (3.7)

By defining the scale a =
√
2π
f

, Eq. 3.6 can be expressed as a time-frequency transform

as follows :

WΨ(τ, f) =

√
|f |

2π1/4

∫ +∞

−∞
x(t)Ψ

(
f√
2π

(t− τ)

)
dt (3.8)

In order to have a better comparison with the STFT with a Gaussian window, the CWT

and the ST (presented in the next section), we use a Morlet wavelet. The Morlet wavelet

is defined as [100]:

Ψ(t) =
π−1/4

√
σ

e
−t2

2σ2 ei
√
2πt (3.9)

where σ plays the role of time-spread parameter. By introducing Eq. 3.9 in Eq. 3.6 we

obtain the definition of the Morlet wavelet transform of the signal s denoted MWΨ.

The variable window width in CWT improves the time-frequency representation

considering the limitation in STFT. The CWT provides good time resolution and rel-

atively poor frequency resolution at high frequencies while good frequency resolution

and relatively poor time resolution at low frequencies. If we look to the signal x2 where

we show the blurred spectrum when we apply STFT and we compare it to the spec-

trum in figure 3.7, we can already see that improved representation when using variable

window size.

3.2.3 Stockwell Transform

The Stockwell transform is a generalized version of the STFT. The ST uses a Gaussian

window with standard variation that varies with the frequency [101], so the ST formula

is same as in STFT 3.1 where the window g is Gaussian and related to σ:

Sg(τ, f) =

∫ +∞

−∞
x(t)gσ(t− τ)e−i2πftdt (3.10)
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Fig. 3.7 CWT for the x2 signal shown in figure 3.6a.

This formula could also be written as an inner product as:

Sg(τ, f) =< x(t), gσ(t− τ)e−i2πft > (3.11)

For the ST transform, the value of σ in the Gaussian window (Eq 3.5) is replaced with

1/|f |, and its formula will be:

g(t) =
|f |√
2π

e
−t2f2

2 (3.12)

The ST formula is then written as:

Sg(τ, f) =

∫ +∞

−∞
x(t)

|f |√
2π

e
−(t−τ)2f2

2 e−i2πftdt (3.13)

If we write the ST as a convolution product between as follows:

Sg (τ, f) =

+∞∫
−∞

p (t, f) g (τ − t, f) dt

= p (τ, f) ∗ g (τ, f)

where p (τ, f) = x (τ) e−i2πfτ and g (τ, f) = |f |√
2π
e

−τ2f2

2 . Using the convolution

theorem in the Fourier space (operator F), we can write ST as a function of the Fourier
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transform X(f) of x(t):

Fτ→α {Sg (τ, f)} = P (α, f)G (α, f) (3.14)

= X (α + f) e
−2π2α2

f2 (3.15)

Then by applying the inverse Fourier transform we obtain:

Sg(τ, f) =

∫ +∞

−∞
X(α + f)e

−2(π)2(α)2

f2 ei2πατdα f ̸= 0 (3.16)

The implementation of the ST will be based on the equation 3.16 since it establishes

a direct link with the Fourier transform of the signal and therefore can benefit from the

efficiency of the FFT algorithm.

Discrete ST Implementation: Let us consider the discrete presentation of x(t) as

x[kT ] ∈ L2(R) with k = 0, 1, . . . , N − 1 where T is the sampling interval. Then the

discrete Fourier transform of x will be:

X[
n

NT
] =

1

N

N−1∑
k=0

x[kT ]e
−i2πnk

N (3.17)

where n = 0, 1, . . . , N − 1.

By setting f = n
NT

and τ = jT in Eq(3.16), we can get a direct link between

the discrete ST and the discrete Fourier transform of both S and the Gaussian window

e
−2π2m2α2

n2 as follows [102]:

S[jT,
n

NT
] =

N−1∑
m=0

X[
m+ n

NT
]e

−2π2m2α2

n2 e
i2πmj

N (3.18)

which is optimized for implementation with respect to Eq. (3.17), because of its relation

to FFT.

The ST replaces the fixed value of σ in the STFT transform, with a function of

frequency 1/|f |. This overcomes the limitation that we explained about the STFT by

finding a way to decompose a signal with high spatial resolution in high frequency (nar-

row window), and low spatial resolution for the low frequency values (wide window).

If we look to the same signal x2 for which we were not able to choose window width

in STFT that gives us a good TF representation. We see a good TF representation for

this signal as shown in figure 3.8. In this figure we notice how ST transform led to very

good energy concentration in the spectrogram in both high and low frequency values.

The discrete ST is a projection of the time series x[kT ] onto a spanning set of vec-

tors. These spanning vectors are not orthogonal, and the elements of the ST are not

independent. Each basis vector (of the Fourier transform) is divided into N localized
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Fig. 3.8 Stockwell transform for the x2 signal shown in figure 3.6a.

vectors by element-wise product. With the N shifted Gaussian, the sum of these N

localized vectors is the original basis vector [102].

The projection on the non-orthogonal functions (Eq 3.18), creates a redundancy in

the previous transforms, together with the complexity of calculations increases the need

of different kind of transforms which overcome these two important points.

3.2.4 Discrete Orthonormal Stockwell Transform

For a signal of length N , there are N2 Stockwell coefficients, and their computation

has a O(N) time complexity. Hence, the complexity of the ST will be O(N3), which is

very time-consuming for high-dimension space.

The Discrete Orthonormal Stockwell Transform (DOST) prunes the redundancy

within the ST. Indeed, the DOST down-samples the low frequencies as they have wider

window, while it keeps the high sampling rates for the high frequencies.

The DOST creates N orthogonal basis vectors, where each vectors targets a certain

area in time-frequency [103, 104]. It can be performed as the inner products between

a time series x[kT ] and the orthogonal basis functions defined as function of [kT ],

with the parameters ν (a frequency variable locating the center of a frequency band),

β (defining the frequency resolution), and τ (for time localization), so the ST formula

in (3.18) will change in DOST to:

Ds(τT,
ν

NT
) =

N−1∑
k=0

x[kT ]C[ν,β,τ ][kT ]; (3.19)
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Fig. 3.9 DOST transform for the x2 signal shown in figure 3.6a.

Where the C[ν,β,τ ] are the orthogonal basis:

C[ν,β,τ ][kT ] =
ie−iπτ

√
β

e−i2π( k
N
− τ

β
)(ν−β

2
− 1

2
) − e−i2π( k

N
− τ

β
)(ν+β

2
− 1

2
)

2 sin[π( k
N
− τ

β
)]

. (3.20)

To ensure orthogonality, the sampling of TF domain should satisfy [104]:

• τ = 0, 1,...,β-1.

• ν and β should be chosen such that each Fourier frequency sample is used only

once.

If we apply the DOST on the signal x2 (see figure 3.6a), we can notice how it looks

in figure 3.9, and how the down-sampling in DOST clearly appears when rearranging

the DOST coefficients in a TF representation.

Now that we have explained that STFT, CWT, ST are good candidates to be used

to get TF representation of a signal, with special specification of each method. These

methods contain redundancy and have a high complexity to be considered in applica-

tions that have time restrictions, while on the other hand, DOST is much less complex

and remove the redundancy.

The question is still open about which one of these methods is more suitable for

sEMG signals classifications from the perspective of complexity, time consumption

and having enough intrinsic representation to be used in sEMG classification.
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3.3 Dimension Reduction

Dimension reduction is a way to reduce the apparent complexity of data and to avoid

over-fitting. This mapping from a high dimensional space into a low-dimensional space,

while retaining meaningful properties, is a substantial step in many machine learning

models especially when dealing with huge dimensional feature space. In this thesis, we

apply both linear and nonlinear methods in order to study the best approach for sEMG

classification. We will detail each used dimension reduction method, assuming that we

have a dataset of observations F ∈ RN×k where N is the number of observations (i.e.

data points), and k is the number of features in each data point. The purpose of any

dimension reduction method is to reduce the features number from k dimensions to q

dimensions where q ≪ k.

3.3.1 PCA

The baseline method for the dimension reduction consists in Principal Component

Analysis (PCA), which is a very popular and widely-used linear dimension reduc-

tion [70]. PCA is a linear projection-based method which transforms the data by pro-

jecting it onto a set of orthogonal axes, which are formed by the eigenvectors of the

co-variance matrix of the original data. For a set of data points F ∈ RN×k, the first step

in PCA is to calculate the covariance matrix A ∈ Rk×k of the dataset. The elements of

A are the covariance between each pair of variables (features) x, y in the dataset:

covx,y =
1

N

N∑
i=1

(xi − x̄)(yi − ȳ) (3.21)

Were x̄ and ȳ are the mean of x and y respectively, N is the number of the data points.

Next, we calculate the eigenvalues and eigenvectors of the covariance matrix:

A = UλUT (3.22)

Where U ∈ Rk×k is the matrix of corresponding eigenvectors, and λ is the diagonal

matrix constructed from the eigenvalues of A. The eigenvectors correspond to eigen-

values which are sorted in descending order.

The last step in PCA is to select the largest q < k eigenvalues and their corresponding

eigenvectors, and the new embedded features matrix Y ∈ RN×q of the manifold F will

be:

Y = FUq (3.23)

PCA projects the original data into lower dimensional space through combination of lin-

ear translations with maintaining most variance. This approach has a limitation when
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the variance of the data points of the space are distributed on all dimensions and could

not be projected without a big loss in variance. To understand this limitation, let us as-

sume that we have 3-dimensional space whose data points approximately fit in a plane,

the PCA method will be suitable for such space and will yield orthogonal direction

within the plane. However, the ”Swiss roll” example in figure 3.10, shows that PCA

depends entirely on the nature of the data and their distributions in the original space.

PCA will not work very well in this situation because it will look for a plane to project

this data on it. In this example, there is no plane that can give a good representation of

the data, where the manifold learning solves this problem very efficiently.

Fig. 3.10 PCA applied on Swiss Roll data points.

3.3.2 Manifold Learning

The manifold is a topological space that locally resembles Euclidean space. To get the

intuition about the difference between the usual Euclidean space and a manifold, we can

look at the two-dimensional manifolds which also called surfaces. Examples include the

plane, the sphere, and the torus. If we look at the sphere example in figure 3.11, we can

see the difference between calculating the distances in the Euclidean space compared

to the manifold, here the distance from point a to b will be 2r where it is πr when

calculating as a shortest path in the manifold (similar to moving from point a to point b

on the Earth). This manifold distance calculations takes into consideration the geodesic

properties of the manifold and preserves the neighborhood characteristics and relations

to other data points in the space.

Manifold learning is an approach to non-linear dimensionality reduction. Unlike

PCA which attempts to create several linear hyper-planes to represent dimensions, man-
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Fig. 3.11 Sphere manifold distances compared to Euclidean distances.

ifold learning attempts to describe the characteristics of the manifold that contains the

data points. The Manifold learning is based on a more general approach in distance

calculation than the Euclidean which is used in PCA. This generalization promotes this

approach to be studied and evaluated empirically in the field of sEMG classification.

3.3.3 Isomap

Isomap [105] stands for ”isometric mapping”, and assumes that the data in the high-

dimensional space lies on some manifold. Isomap is a non-linear dimension reduction

method which aims at preserving the geodesic distances in the lower dimension. It con-

structs a graph that approximates the geodesic distances of the points in the manifold,

then it considers this graph as an approximation of the manifold.

For a set of data points F ∈ RN×k, the first step in Isomap is to compute the inter-

point Euclidean distances matrix D ∈ RN×N . The elements of D denoted dij are,

∀i, j ∈ {1, . . . , N}, dij will be the Euclidean distance between Fi, Fj ∈ F as:

dij = ∥Fi − Fj∥2 where Fi, Fj ∈ Rk (3.24)

Then, we define the initial paired-distance matrix P ∈ RN×N
+ such that each element

pij is, ∀i, j ∈ {1, . . . , N}:

pij =

pij, if Fj belongs to the u nearest neighbors of Fi

∞, otherwise
(3.25)

P serves as an adjacency matrix in order to build a graph G which approximates the

manifold that contains data points F .

In its second step, Isomap calculates the geodesic distances between each pairs by

computing the shortest path on G using Dijkstra’s algorithm. This yields a geodesic
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distance matrix DG ∈ R+
N×N , which represents the new kernel of the initial manifold.

Finally, we calculate the spectral decomposition of DG:

DG = VΛVT (3.26)

where Λ is the diagonal matrix constructed from the eigenvalues of DG , and V is the ma-

trix of corresponding eigenvectors. To get the embedded features in the q−dimensional

space, we take the first q eigenvalues as Λq and first q eigenvectors as Vq and the new

embedded features matrix Y of the manifold F :

Y = VqΛ
1
2
q (3.27)

Isomap is able to keep the geodesic properties of the space by preserving the local

relations between the data points in a manifold. If we look at the Swiss roll example

again and reduce its dimension from 3D to 2D as shown in figure 3.12 we can see

how Isomap creates the graph of geodesic distances which preserves the inter-points

distances of the space, and that leads to better discrimination when projecting the 3D

space into 2D.

Fig. 3.12 Isomap applied on Swiss Roll data points.

The only parameters to by tuned in Isomap is the number of nearest neighbors u in

equation (3.25). This parameter determines the area in which the points are considered

to be neighbors and the distance between them will be calculated as Euclidean distance.

If we look on the figure 3.13, we see that for the low value of u, less neighbors will

be defined and as a result we will have less connecting points when calculating the

shortest path, while increasing the number of neighbor will lead at its maximum to
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the state where all data points are considered to be neighbors and the distances are

calculated as Euclidean distances. We see that for value u = 1000 which is the number

of all points, in this case, the distance calculations shown in equation 3.25 will be the

Euclidean distance as the neighbors are all the points.
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Fig. 3.13 Isomap applied on Swiss Roll data points with different neighbors number.

3.3.4 Diffusion Maps

Diffusion Maps (DM) aims to reduce the dimension of a high-dimensional dataset while

preserving the geometrical properties [62]. The kernel in DM is Gaussian, and it defines

the connectivity of each point with its neighbourhood. Using a Gaussian kernel has

special characteristics:

• Values in the kernel decrease with distance and goes to zero for distant points

which are more likely belong to different cluster or kind.

• It is bounded between zero and one, so it is less sensitive to abnormal observa-

tions, where zero means unconnected points.

The first step in this method is to calculate the positive weight matrix W ∈ RN×N
+∗

such that wij is, ∀i, j ∈ {1, . . . , N}:

wij = e−
∥Fi−Fj∥

2
2

2ρ . (3.28)

This defines the local similarity measurement between i and j. This measurement could

be tweaked by the kernel scale ρ, the choose of this scale is based on prior knowledge
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of the structure and experiments on the data [106].

Next, a normalized kernel matrix A ∈ RN×N
+∗ is computed, ∀i, j ∈ {1, . . . , N}:

aij =
wij

N∑
i=1

wij ×
N∑
j=1

wij

(3.29)

After that we produce the Markov transition matrix M ∈ [0, 1]N×N such that ∀i, j ∈
{1, . . . , N}:

mij =
aij

N∑
i=1

aij

(3.30)

M is a normalized version of A so that it is analog to a probability of moving from Fi

to Fj .

The final step is similar to the final step in Isomap (3.26), as we calculate the spectral

decomposition of the matrix M and the embedded features matrix Y .

We see in figure 3.14, how DM unfolds the Swiss roll data points into 2D space, and

how this unfolding changes with the value of ρ.

Fig. 3.14 DM applied on Swiss Roll data points with different ρ values.

3.3.5 Multidimensional Scaling

Multidimensional Scaling (MDS) [107] aims to reduces the dimension of the data by

using only the dissimilarities measures between observations rather than using the data

points. The idea is to find a lower-dimensional representation of the data that preserves

the pairwise distances as well as possible [108]. The MDS creates a configuration of
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points which have paired distances similar to the original ones. The steps of MDS are

the following [109]:

• From the features matrix F , we calculate the inter-point distances matrix D ∈
RN×N as in equation (3.24).

• From D, we form the matrix V so that ∀i, j ∈ {1, . . . , N}:

vij = −1

2
d2ij (3.31)

• Then we apply double centering:

B = HVH (3.32)

where H is the centering matrix: H = I − 1
N
1N1

T
N with 1N a vector of ones.

• As in Isomap and DM, in the last step we calculate the spectral decomposition of

B which is explained in (3.26) and the new embedded features as in (3.27).

The new dimension q should be chosen so that features still preserve intrinsic charac-

teristics of the observation, while removing weakly-relevant or redundant information.

Choosing distance measurements method in MDS is very essential as it measures the

dissimilarities between the data points. In figure 3.15, we notice how space unfold-

ing changes with the change of the distance function in MDS, and that with a proper

distance calculations, the MDS was able to unfold the space successfully.
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Fig. 3.15 MDS applied on Swiss Roll data points with different distance functions.
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3.4 Theoretical Background Recap

In this chapter, we introduced the theory of some known TF methods that are used in

sEMG classification; namely: STFT, CWT, ST and DOST. We showed some differ-

ences between these methods, advantages and disadvantages compared to each others.

As the TF methods yields a high dimensional space, we introduced some of the dimen-

sion reduction methods that we will use in combination with the previous TF methods.

These dimension reduction methods are: PCA, Isomap, DM and MDS.

The TF features of the sEMG signals are proven to be suitable in this area, but confi-

dently using this kind of features requires answering questions as which method is more

suitable to describe movements patterns in the sEMG signals, or the complexity of each

methods considering the time limits in the prosthesis. The dimension reduction method

is also very related to the features type and the data itself, and affects both the accuracy

of classification and the training efficiency. In the next chapter, we apply all of these

methods combinations; features extraction and dimension reduction with widely used

classifiers in this area. Applying these combinations on the same database gives us the

ability to fairly compare known methods in this field, besides to applying new methods.

This comparison is further used to focus on improving the performance of the selected

combinations.
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CHAPTER 4

ALGORITHMS AND RESULTS

The TF methods we discussed in chapter 3 are good representatives for the sEMG sig-

nals, as they address their non-stationary properties of these signals and represent the

intrinsic characteristics of them. We saw that the ST and CWT could be more suitable

than STFT due to their adaptive window length, but all of these methods are time-

consuming and this makes it difficult to be applied in real prosthetic application. The

other factor is the number of the features they yield which is very high. These two

criteria promote using DOST as it removes the redundancy in ST and has much less

complexity in calculations. The number of features extracted in any of previous meth-

ods (including DOST), will be high and it is important to do the dimension reduction

efficiently in order to keep the distinctive properties while decreasing the space into less

dimensional space. The methods of dimension reductions could be linear or non-linear

as we saw in previous chapter. The main concept of the non-linear methods is based on

measuring the similarity/dissimilarity between the data points. The use of non-linear

methods could improve the training by decreasing the size of the needed training set,

and also better performance with cross-subjects features [62]. In our study, we at first

do an extended comparison between different TF/DR methods combinations, then we

improve both in features extraction and dimension reduction methods in the goal of

increasing accuracy and efficiency of calculations.

In this chapter, in section 4.1, we will show the workflow of our algorithm, the ref-

erence data we use to compare methods combination, and how we apply these methods

in each step of feature extraction, dimension reduction and classification. In section 4.2,

we show the comparison results we got for each stage in our workflow besides to the

results from a DL methods with TF features as an input. Based on this comparison,

we then select the best combination for our algorithm. In section 4.3, we improve the

selected methods combination by using a Generalized DOST (GDOST), then we pro-
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pose an enhancement on the similarity measurements in MDS kernel calculations. We

apply these improvements and show the results and discussions. Finally in section 4.4,

We extend our tests on different datasets in NinaPro, where we apply our methods on

sEMG data collected from amputees. We also test our methods on an increased number

of movements. Finally in this section, we extend our tests on a different database built

by the partner team.

The workflow of our research starts from the sEMG data, feature extraction, dimen-

sion reduction and finally the classification. In the next section, we will explain the

main algorithm and how we applied our methods in each step.

4.1 Algorithmic Considerations

4.1.1 Main Work Flow

The workflow is divided into the following main parts:

• Data pre-processing: Starting from the raw sEMG, this step includes data nor-

malization which is done by making the mean value is equal to 0 and the standard

deviation is 1 on each channel. The normalized data is S ∈ Rn×m, where m is

the number of channels and n is the total number of signal’s samples on each

channel, will be used in features extraction.

• Time-frequency features extraction: A time-frequency transform is applied on

the normalized signals of each channel. Then for each observation, we combine

the result into a single vector of length k. The resulting features matrix for all

observation is F ∈ RN×k where N is the observations number (data points).

• Dimension reduction of the features space: we apply a dimension reduction

method to transform the feature matrix F ∈ RN×k into a more compact Y ∈
RN×q where q ≪ k.

• Classification: We evaluate the extracted features using group of widely-used

classifiers for sEMG signals.

This algorithm is summarized in figure 4.1, in which we recall the main methods of

interest in each step. In order to extend the comparative study we made, we also applied

the Deep Learning (DL) method on the same data. The DL can merge stages of features

extraction, dimension reduction and classification to be embedded inside the neural

network. We followed a known approach of the DL applied in this area to provide a

baseline of differences in performance between the DL and other approaches.
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Normalized sEMG S ∈ Rn×m

Features Extraction

GDOSTDOSTSTCWTSTFT

Dimension reduction

PCADM IsomapMDS

Classification

SVMLDAk-NN

Movement’s class

F ∈ RN×k

Y ∈ RN×q

Fig. 4.1 The main work flow. It shows the data flow starting from the normalized sEMG
signals; and how the data processed until the classification.
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4.1.2 The Referenced Data

For evaluating the combinations of the chosen methods in our comparison study, we

used the database we mentioned in section 3.1.3, and this database is provided by the

Ninapro Project [27]. The advantages of this database is that it contains recorded data

for a wide range of movements and for many subjects, which provides a good resource

for training and testing. This database is recorded in a unified format which is useful

when comparing our applied methods. For the experiments in section 4.2, we selected

the dataset 2 and inside this dataset, we selected the movements group in the exercise 1.

This group contains 17 basic movements performed by the wrist and fingers. In this

exercise, subjects were asked to execute each movement 6 times with holding the po-

sition for 5 seconds followed by 3 seconds of resting. The raw sEMG signals were

saved with their movements index. We also extended our tests to include exercise 2

from this dataset, which has 23 movements of grasping and functional movements, so

the total number of movements with the previous exercise was 40 movements. Besides

to dataset 2, we also used sEMG data from dataset 3, which contains sEMG collected

from amputees. For these NinaPro datasets, the sampling rate is 2 kHz and the signals

are recorded using m = 12 electrodes placed on subject’s skin of the arm. The recorded

sEMG data is saved into the matrix E ∈ Rn×m where n is the number of recorded

samples on one channel. Figure 4.2 shows the list of these basic hand moves.

In addition to the Ninapro, we applied one selected method combination on a com-

pletely different database, which we mentioned in section 3.1.2. This database is recorded

by a partner team from ZHAW School of Health Sciences in Zurich (Switzerland), and

contains 4 movements performed by the two hands, recorded on 16 channels with sam-

pling rate 1200Hz. The purpose of this experiment was to show that our selected method

could be generalized on other sEMG database and to help our partners to evaluate their

acquisition protocol.

Fig. 4.2 Visual depiction of the 17 hand gestures considered in section 4.2, based on the
NinaPro database [27].
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4.1.3 Feature’s Sliding Window

Identifying the movement that the person intends to perform should be done in a rea-

sonable time frame, because this time will determine the delay between the intention

and the movement decision which will be sent to the prosthetic. In order to keep the re-

sponse time in acceptable range, a threshold of 300 ms should be respected as a response

times [22], this includes the window length in addition to the computation time. How-

ever, the segment should be long enough to have sufficient features for classification.

Therefore a trade-off in response time and accuracy should be considered when select-

ing the window length. In our experiments we chose the window length equal to 250 ms

with 125 ms overlapping as it is used in studies with similar constraints [53, 42, 110].

The sampling frequency is 2 kHz, for each observation we get 12 windows (i.e. 12

electrodes) with 250 ms length. In figure 4.3 we can see an example of observation

windows on one of the channels.

4.1.4 Feature Extraction

After segmentation, we get 12 windows for each single observation. We apply the TF

method on each of them, and then we yield the resulting matrix into a vector. Finally

we combine all these 12 vectors into one vector Fi which represents the TF features of

this observation Fi ∈ Rk where k is the number of TF features of a single observation.

For each observation in the dataset, we extract the features’ vector in the same way,

then we save it into the feature matrix F ∈ RN×k where N is the observations’ number

as shown in 4.4.

For the TF features, we use a frequency range between 1 and 200 Hz, which contains

the main energy of the sEMG signals [13].

Given these values, the number of TF features k on a single observation is k ≃ 3.105

for STFT, CWT and ST, while k ≃ 6.103 for the DOST. We empirically choose the

value σ = 0.03 in STFT (see Eq. (3.5)) because it permits a compromise between

the resolutions of time and frequency. For the ST, we keep the original version where

σ = 1/|f | (see Eq. 3.12). Similarly, for the DOST, the original version proposed by

[104] is applied in this paper (Eq. 3.19).

Figure 4.5 depicts an instance of STFT, ST, CWT, and DOST transforms applied on

the same two samples of movements. The figure depicts some of the mathematical

properties of each method: STFT has the same resolution along all the time-frequency

plane, while we notice that CWT and ST have a variation in the resolution over the

value of frequency. This will give better frequency resolution for low frequency and

better time resolution for high frequency. In DOST, it shows visually less resolution

because it removes the redundancy that exists in the other methods. Notably that will

not significantly affect the accuracy result.
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Fig. 4.3 Example of recorded signals on channel 1 for the 17 movements (see 4.2). TF
transforms of the highlighted movements are shown in Fig.4.5.

In practice, we observe a significant drop in computation time when using the

DOST, which takes around 8% of the required time for STFT or ST (Table 4.1), in

addition to lying in a lower-dimensional space.
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Fig. 4.4 Features extraction of a sEMG signal over 250ms window.

Method Time(ms)
STFT 1.75
CWT 2.3

ST 1.60
DOST 0.13

Table 4.1 TF feature computation time on a window of one channel, averaged over all
39360 samples windows in the dataset.
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(a) Move 3, channel 1.
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(b) Move 7, channel 1.
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(c) STFT of move 3, channel 1.
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(d) STFT of move 7, channel 1.
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(e) CWT of move 3, channel 1.
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(f) CWT of move 7, channel 1.
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(g) ST of move 3, channel 1.
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(h) ST of move 7, channel 1.
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(i) Rearranged DOST coefficient of move 3,
channel 1.
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(j) Rearranged DOST coefficient of move 7,
channel 1.

Fig. 4.5 TF transforms examples: left side is the movement 3 - channel 1, right side is
the movement 7 - channel 1. The corresponding hand gestures are shown in figure 4.2.
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4.1.5 Dimension Reduction

For all methods applied in dimension reduction, the input is the features matrix F ∈
RN×k, with k depending on the method used in previous step. The number of the em-

bedded features is important as selecting too many features will lead to over fitting in

the classification and slower training, while in the other hand, selecting not enough fea-

tures will lose valuable data in the features and in both cases the classification accuracy

will be worse.

For PCA, the dimension of the new embedded space is decided based on the pre-

served variance from the original space. There will be a trade-off between the number

of the features in the embedded space and the preserved variance. Based on our tests,

we can see in Figure 4.6a the change of the preserved variance by the number of the

embedded features and the slope which presents the changing rate of the preserved vari-

ance. We test different values of embedded features number in a range where preserved

variance stop increasing rapidly (i.e. V ark+1−V ark < ε). Finally, we choose the value

of q with the best accuracy (figure 4.7).

For the non-linear methods, the original space of the features matrix is replaced by

a kernel of paired similarity/dissimilarity. Therefore, we use the variance of the new

kernel as a factor for choosing the new dimensions.

First, we specify the range in which the preserved variance is changing significantly

with the number of embedded features. In figures 4.6b, 4.6c, 4.6d we see the relation

between the preserved variance and the number of the features in the embedded space

for kernels of MDS, Isomap, DM respectively. Then, we test all possible values of the

embedded features in this range to choose the one with best results. Figure 4.7 shows

classification accuracy by number of embedded features for non-linear methods tested

on a specific range of values.

Isomap requires the setting of an additional parameter, namely the value u in Eq 3.25

which is the number of neighbours to be considered when building the graph. In order

to choose u, we run our tests for all u values [10, 300]. Choosing bigger values for u

means that more data points will be considered as neighbors (Eq 3.25), which leads

into converting to the Euclidean distances rather than the manifold distances. We chose

u = 220 as it leads to the best accuracy based on this test as shown in figure 4.8.

4.1.6 Classification

For the k-NN classifier, we choose value of 3 nearest neighbors, as it gave better re-

sults on our data compared to bigger values, and for SVM, we choose the Gaussian

kernel function and combine several one-versus-one of multiple binary SVMs. Each

combination is evaluated based on K-fold Cross-Validation with value K = 5.
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Fig. 4.6 Preserved variance by number of features in the embedded space.

4.2 Methods Comparative Study

The variety of the methods in each step of the movement identification increases the

number of possible combinations. Some of these combination could be found in the lit-

erature, but it is still difficult to compare fairly as they are applied on different datasets

with completely different experimental circumstances, such as the number of the move-

ments under study, the number of the electrodes used when recording the sEMG sig-

nals, the sampling rate of the recorded signals... etc. These criteria play an essential role
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Fig. 4.7 Classification accuracy by features number.

50 100 150 200 250 300

Number of neighbors u

70

72

74

76

78

80

82

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
(%

)

Fig. 4.8 Classification accuracy by number of neighbours in Isomap algorithm, with the
selected values of 220 that gives best accuracy.

in the overall methods’ evaluation; therefore, having a fair comparison between these

methods’ combination requires applying them on the same dataset under the same crite-

ria. In order to achieve this goal, we applied all the methods combinations mentioned in

chapter 2, and shown in Figure 4.1. The final numerical results are shown in Table 4.2.

4.2.1 TF Methods Comparison

As we see in Table 4.2, the methods STFT, CWT and ST are approximately giving the

same performance with a slight advantage for the ST features.

The advantage of ST is due to its multi-resolution nature, also it adapts better to

the variation of the frequency content of the sEMG signal comparing to the STFT,

which can enhance the quality of the extracted features. Both CWT and ST adapt their

resolution to the frequency change, but ST representation gave a slight advantage over

the other methods.

The DOST gives less accuracy with no noticeable difference from both STFT and

ST. The DOST preserves information in time-frequency domain in a non-redundant

approach (due to the used orthogonal basis) and it has a O(N) time complexity (to be
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compared to O(N3) for other TF methods), which explains why the DOST was more

than 10 times faster on our testing platform1 (see Table 4.1). This criteria is an important

advantage for the DOST as it makes it possible for real prosthetic application when

processing time is a very critical factor and the processing power is limited. However,

rigorously speaking, the DOST is not exactly the orthonormal version of the ST. As

shown in [111], the classical DOST version applies the equivalent of a boxcar window,

and not a Gaussian one as in the ST. This can explain in part the slightly decreasing

performance for the classification rate for the DOST.

4.2.2 Dimension Reduction Methods Comparison

For the dimension reduction methods, PCA yields better results than non-linear di-

mension reduction methods, then comes MDS which outperformed Isomap and DM.

The proposed method MDS performs less than PCA, but based on a study [62] which

compared PCA with DM on STFT features; it was shown that non-linear dimension

reduction outperforms PCA when less training data is used. Training data size is an

important factor as it reflects the time and effort needed by the amputee to be able to

use his prosthetic. Non-linear dimension reduction methods is based completely on the

constructed kernel that describes similarity/dissimilarity between paired observations.

The fact that they perform less that PCA could be because a better way is required to

measure the similarity between observations. This point will be further explained in

this chapter in section 4.3.

4.2.3 Classifiers Comparison

The k-NN classifier is giving the best classification accuracy. These results are consis-

tent with some studies on sEMG signals classification. In [77] both k-NN and SVM

were applied on TF features with PCA as dimension reduction method and k-NN out-

performed SVM. Another study [74] did comparison between k-NN and LDA classi-

fiers on sEMG signals of wrist motions and they concluded that k-NN has better average

recognition rate.

For the purpose of comparing combinations of TF methods with DR methods, we

observed that the methods combination that leads to better accuracy using k-NN clas-

sifier is also giving better accuracy than other methods combinations using LDA and

SVM, which means, changing the classifier will not promote a different combination

from the one with the other classifier.
1Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz - 64 GB Ram
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4.2.4 Deep Learning

In the previous comparison, we did an extended comparison of a wide range of TF

methods and dimension reduction methods. All of these methods are studied and cho-

sen based on sEMG signals characteristics and experiments. Another popular approach

in machine learning is deep learning, where the whole stage of feature engineering

(including features extracting, selecting, dimension reduction) could be done automati-

cally by deep structure of neural network, or could be used as an input for the DL neural

network. In order to compare the performance of the previous combinations with DL,

we choose the ST features as an input for a DL model, as these features gave best accu-

racy score in the combinations comparison. We chose to use the TF features instead of

the raw sEMG data as an input for the DL model, because it is proven to perform better

with deep learning, as shown in a different study [63].

For the deep learning model, we choose a classical model called GoogLeNet with a

gradient descent algorithm to minimize the loss function and 20 epochs for training.

After applying deep learning under same condition for combinations in Table 4.2, the

accuracy was 84.06% which is less than other methods combinations, which is explain-

able as any DL model will need relatively large amount of labeled data to be able to

perform well.

4.2.5 Comparison Recap

The previous experiments showed the importance of using TF features even with auto-

mated feature engineering methods (DL) as these features are good representatives of

the sEMG signals. The downside of known and widely used methods are their compu-

tation time, complexity, and the redundancy in their representation. Moreover, the large

number of features they produce requires to apply a dimension reduction method before

the classification phase. The essential role of the dimension reduction is not only mini-

mizing the dimension of the features space, but also affecting the needed size of training

set and generalizing the features across the subjects [62]. A preliminary version of this

comparison was published as a conference paper [112], and the full comparative study

were published as a journal paper in Expert Systems with Applications journal [28].

Looking to Table 4.2, we see that the combination of ST, PCA, k-NN achieved the best

accuracy among all the other combinations, but considering the previous criteria, the

DOST would be preferred due to its lower complexity and non-redundant representa-

tion. In the dimension reduction, PCA is slightly better than MDS; however, MDS will

be preferred considering the training size and generalizing features MDS. The combi-

nation of DOST and MDS has advantages over the other combinations but has still a

lower accuracy. This is the main motivation to extend our study in the next section.
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TF DR q Class. Acc. (%) Time(s)

STFT

PCA 18
k-NN 90.05 167
LDA 81.78 167
SVM 84.48 168

MDS 14
k-NN 87.88 91
LDA 77.76 91
SVM 82.84 92

Isomap 14
k-NN 79.17 688
LDA 73.50 688
SVM 75.03 689

DM 14
k-NN 86.09 95
LDA 79.42 95
SVM 83.17 96

ST

PCA 15
k-NN 90.96 179
LDA 83.62 180
SVM 85.63 181

MDS 11
k-NN 88.99 89
LDA 77.60 89
SVM 82.58 100

Isomap 11
k-NN 81.10 695
LDA 73.11 695
SVM 75.11 696

DM 11
k-NN 87.91 87
LDA 82.17 88
SVM 84.70 89

Deep Learning GoogLeNet 84.06 9600

CWT

PCA 13
k-NN 89.92 197
LDA 82.41 198
SVM 85.29 199

MDS 15
k-NN 88.18 112
LDA 79.38 113
SVM 83.10 113

Isomap 15
k-NN 79.88 715
LDA 73.65 715
SVM 76.48 716

DM 15
k-NN 86.53 115
LDA 81.35 116
SVM 83.21 116

DOST

PCA 11
k-NN 88.08 15
LDA 80.40 15
SVM 82.31 16

MDS 10
k-NN 87.13 28
LDA 72.68 29
SVM 75.74 29

Isomap 10
k-NN 76.88 589
LDA 70.23 589
SVM 72.73 590

DM 10
k-NN 85.22 13
LDA 78.14 13
SVM 81.60 14

Table 4.2 The final classification results of all combinations of the used methods with
their computation time. The classification rate for each combination were calculated us-
ing cross-validation method and an average of accuracy for 5 subjects. We highlighted
in bold the best results for each combination group, and the overall best results (accu-
racy and time) are highlighted with colors. TF: time-frequency method, DR: dimension
reduction method, q: the number of features in the embedded space, Acc.: the classifi-
cation accuracy, Time: the overall time for feature extraction, dimension reduction and
training.
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4.3 Generalized DOST and its Similarity Measurements

4.3.1 Generalized DOST

The promising results of DOST and MDS with their advantages over other methods

motivated us to extend our study in this direction, and improve the performance of these

methods. The DOST is the orthonormal version of the ST. It avoids redundancy in the

time-frequency plane and paves the way to compute time-frequency representation in

lower algorithmic complexity [104]. Let x(t) be a signal ∈ L2([0, 1]), p is the number of

the frequency bands, ν indicate the center of a frequency band, β indicates the width of

the frequency band and τ for the time localization. Let us recall the DOST coefficients

Dp,τ calculations, which is an inner product between the signal x(t) and the orthonormal

basis functions Cp,τ :

Dτ,p =< x,Cp,τ > (4.1)

where Cp,τ is given as [103]:

Cp,τ (t) =
1√
β(p)

ν(p)+β(p)/2−1∑
f=ν(p)−β(p)/2

e2πifte−2πifτ/β(p), t ∈ R (4.2)

The basis Cp,τ is not equivalent to the classical ST with Gaussian window. Indeed

as R.G. Stockwell pointed in [104] this is equivalent to ST with boxcar window. In

order to propose a generalized version of the DOST that allows to apply an admissible

generalized window φ, authors in [111] propose the following basis for the Generalized

DOST (GDOST):

Eφ
p,τ (t) =

1√
β(p)

β(p)−1∑
j=0

[
cφp,j(ν(p))

]−1
e2πi(β(p)+j)(t− τ

β(p)) (4.3)

For the special case of boxcar window, let φ = χ̌ = F−1χ with F−1 is the inverse

Fourier transform operator, then χ(ν) can be expressed as follows:

χ(ν) =

0 ν ∈
(
−∞,− 1

N

]
∪
[
1
N
,+∞

)
1 ν ∈

(
− 1

N
, 1
N

) (4.4)

where N is the length of the analyzing window. In this case, we have:

cχ̌p,j(ν(p)) = 1, (4.5)
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Fig. 4.9 DOST representation (left), and its GDOST counterpart of the same movement.
Both are rearranged to yield a TF representation.

for all p and j. Hence, Eχ̌
p,τ can be re-written as :

Eχ̌
p,τ (t) =

1√
β(p)

β(p)−1∑
j=0

[
cχ̌p,j(ν(p))

]−1
e2πi(β(p)+j)(t− r

β(p))

=
1√
β(p)

β(p)−1∑
j=0

e2πi(β(p)+j)(t− τ
β(p))

= Cp,τ (t)

(4.6)

In this thesis, we introduced the use of Gaussian window in DOST as originally used in

the ST with σ = 0.1. In this case, φ = g(t) which can be given as:

g(t) =
1

σ
√
2π

e
−t2

2σ2 . (4.7)

An example of DOST and GDOST on the same signal is given in Fig. 4.9.

4.3.2 Feature Extraction from GDOST

For an observation X recorded on m channels: X = {x1, x2, ..., xm}, the GDOST

transform of this observation is represented as:

GDOST (X) = {Fx1 , Fx2 , ..., Fxm}, (4.8)

where Fxi
is the GDOST transform of xi.

The GDOST yields a number of features equals to the number of the samples in the

signal, so that ∀i ∈ {1, ...,m}, Fxi
∈ Ra, This means that the features number of

observation X on all channels will be k = m× a. We extract the GDOST features for

every observation in the dataset, so that the features matrix of the all observations in the

dataset is F ∈ RN×k, where N is the overall existing observations in the dataset. In

figure 4.10, we can see GDOST representations of two different movements.
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(d) GDOST of move 7, channel 1

Fig. 4.10 GDOST transform example for two different movements (3 and 7, see
Fig. 4.2) acquired on the same channel.

4.3.3 Similarity Measurements

We saw in chapter 3, how the non-linear dimension reduction methods as MDS are

based on the similarity (distance) measurements between the data points. These meth-

ods replace the observations’ features by a new set of features measuring the similarities

between each pair of observations. The paired distances between two observations x, y

is calculated as:

dxy =
m∑
i=1

∥Fxi
− Fyi∥2 (4.9)

The good distance measurement means that the values are relatively low when the ob-

servations belong to the same movement, and high when they belong to different move-

ments.

4.3.4 Distance Synchronization

The Euclidean distances between the TF representations are sensitive to the time shift

in GDOST features, which leads to erroneous similarity calculations (Eq. 4.9), while

better similarity calculations should consider the relative positions of the energy in the

time-frequency plane. To achieve that when calculating the distance between X and Y ,

we shift features of Y step-by-step and calculate the distance after each shifting.

Let the operator T jF be the circular shift with step j ∈ Z on the sequence of

features F . Then, the distance between X and Y is taken as the minimal distance

between Y and shifted versions of X . The proposed operation can be expressed as
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follow:

dxy = min
j∈{0,...,a−1}

m∑
i=1

∥(T jFxi
)− Fyi∥2 (4.10)

Where ∀i ∈ {1, ...,m}, Fxi
∈ Ra. The final distance matrix is D ∈ RN×N , will contains

all paired distances dxy.

Figure 4.11 shows GDOST representations of two different observations of the

movement 9 recorded on channel 1. In Fig. 4.11a, and Fig. 4.11c we notice that calcu-

lating the distance directly between these two observations (Eq. 4.9) would lead to high

dissimilarity as shown in Fig. 4.11b, while distance between GDOST in Fig. 4.11a and

Fig. 4.11d will be the minimum value of distance (Eq. 4.10) between these observations

and actually reflects the fact that they both represent the same movement. Fig. 4.11b

shows how the distance between these two observations differs while performing circle-

shift on the time resolution. We can notice that in this example, the minimum distance

happens with shift value equal to 210 time-sample, as shown in Fig. 4.11b as a red

point, and the corresponding GDOST shifted transform could be seen in Fig. 4.11d.
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Fig. 4.11 GDOST of two different observations X0 and X1 that belong to a same move-
ment. (d) shows GDOST(X1) with circle-shifting by value 210. (b) shows the distances
between GDOST(X0) and GDOST(X1) while shifting X1.

4.3.5 Experiments

We choose the number of features q that yields the maximum classification accuracy

on our database over the range [10, 400], which is q = 191. The classification accuracy
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Methods Euclidean Distance Synchronized Distance
GDOST, Isomap, k-NN 80.58% 90.26%
GDOST, DM, k-NN 88.38% 95.79%
GDOST, MDS, k-NN 88.91% 97.56%

Table 4.3 The classification accuracy GDOST with Isomap, DM and MDS using both
Euclidean and synchronized distances.

will start to drop as adding more features will increase the classifier’s over-fitting. The

approach of the non-linear dimension reduction methods is based on the measurement

of similarities between the observations, so we applied this enhancement on each non-

linear dimension reduction methods, Isomap, DM and MDS.

For MDS, once the synchronized paired-distances between observations are com-

puted, we get the kernel matrix of MDS, which contains the new features of each ob-

servation as a vector of distances from other observations. For Isomap, and DM the

Euclidean distance calculations between observations will be replaced with new syn-

chronized distance calculation (Eq 3.24 and Eq 3.28). In order to evaluate our features

extraction methods and dimension reduction approach, we used kNN classifier with

k = 3, with a 5-Fold cross-validation. The main work flow is shown in figure 4.14.

4.3.6 Results

We first show the improvement in classification accuracy with using the synchronized

distances in the non-linear dimension reduction methods in Table 4.3. We notice a

significant improvement when using the synchronized distances compared to usual

Euclidean distances. We see that for the MDS which has the highest accuracy with

97.56%, the improvement on the classification accuracy was approximately by 9%. We

also see that the accuracy increased from 80.58% to 90.26% for Isomap kernel, and

from 88.38% to 95.79% for DM kernel.

The accuracy of MDS has a significant improvement when compared to the results

in Table 4.2 which are applied on the same data. Table 4.4 summarize these results,

compared with previous results shown in Table 4.2 and other studies made on the same

database and with the same number of movements.

In 4.2, DOST with MDS gave 87.13% accuracy, which means by using enhanced

MDS kernel and GDOST, we were able to increase the accuracy by 10%. Comparing

with the best results obtained before; which was achieved by using ST with PCA with

accuracy 90.96%, the improvement was 6.6%. By comparing DOST and GDOST when

both are applied with enhanced MDS, we see that using the GDOST led to improving

the accuracy from 96.73% to 97.56%. The significant improvement obtained by these

combination (GDOST and enhanced MDS) came from the MDS kernel optimization, so

the distances were calculated in a way that actually measure the dissimilarity between

71



Methods Accuracy Reference
TD features set, kNN 85% [73]
RMS, Median Frequency,
Para-consistent artificial neural network 76% ± 9.1% [113]

STFT, SVM, kNN 92% [114]
ST, PCA 90.96% Table 4.2
DOST, MDS 87.13% Table 4.2
DOST, Enhanced MDS 96.73% this experiment
GDOST, Enhanced MDS 97.56% this experiment

Table 4.4 The classification accuracy of different feature extraction and dimension
reduction combinations done on the same database and same movements. The table
shows the significant improvement of using GDOST and enhanced MDS.
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Fig. 4.12 Confusion matrix of 17 hand gestures (shown in figure 4.2) classification.

observations, besides to using Gaussian window instead of rectangle window in DOST,

which improved the TF features of the observations. The comparison with TD features

which were used by different studies as in [73] or combined with frequency features

as in [113] emphasize the superiority of TF features over TD features or TD and FD

combined features as we see in Table 4.4.

4.3.7 Confusion Matrix

The confusion matrix of using GDOST with enhanced MDS is shown in figure 4.12,

where we can see the classification results of the test set of one of the used subjects. The

confusion matrix shows that the miss-classification comes from the first three move-

ments, where the differences are only in a movement of one finger as shown in fig-

ure 4.2.

The reason comes from the fact that the four fingers: the index, middle, ring, and
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Fig. 4.13 The responsible muscles of the fingers’ movements [115] classification.

little fingers are moved by Flexor Digitorum Profundus (FDP) [115], where the thumb

is moved by the flexor pollicis longus (FPL) as we see in figure 4.13. These two muscles

are responsible for all of fingers’ movements and the recorded sEMG signals sometimes

fail to address the differences between these movements. However, we see that move-

ments of wrist as rotation, flexion, extension, deviation, hand open and close; all these

movements are very well classified due to their differentiated sEMG signals.

The number of movements samples should be balanced on all movements according

to the equal movements repetitions number in NinaPro database [84], but here we notice

imbalanced number that differs randomly from subject to another. This imbalance could

be caused by the experiment’s human errors. In this kind of classification, we give equal

importance for both true/false classification output, which explains having the accuracy

measurement as an evaluation method. In table 4.5, we can see the number of the

observations for each movement for all used subjects. The number varies between 927

to 1347 with no large imbalance between the movements’ observations overall.

4.3.8 Section Recap

In this section, we proposed using the GDOST, for the sEMG feature extraction, com-

bined with enhanced MDS and k-NN. For the feature extraction stage, the importance

of this improvement comes from the fact that GDOST is a time-efficient TF transform.

The other significant improvement was made on the performance of the non-linear di-

mension reduction methods by enhancing their kernel calculations to be more suitable

to the TF features. This enhancement promotes these methods as they perform better

over smaller training sets, and they also better presents the cross-subject features. At
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Movement Number of observations
1 1319
2 1289
3 1224
4 1305
5 1174
6 1023
7 1347
8 1313
9 1219

10 1023
11 1333
12 1122
13 927
14 1026
15 936
16 997
17 947

Table 4.5 The total number of the movements’ observations of the used subjects.

Normalized sEMG S

GDOST MDS k-NN

Movement’s class

F ∈ RN×K Z ∈ RN×q

Fig. 4.14 Main algorithm overview of the selected methods.

the end of this chapter, we recommend using GDOST with enhanced MDS and k-NN

as shown in Figure 4.14.

4.4 Generalization on Different Datasets

4.4.1 Amputation Impact on Classification Accuracy

4.4.1.1 Clinical Characteristics Effect

The clinical characteristics of the amputation as the remaining percentage of forearm,

and the limb sensation have a big effect on the classification accuracy. The relation

between the classification and the clinical characteristics of the amputation is not well

studied in the literature, while this relation is a very important step in understanding the

challenges when building real prostheses.

A study [116] proved that the limb sensation is significant to the classification accuracy,

besides to the reasonable dependency between the remaining percentage of the forearm
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Subject Remaining
Forearm (%)

Phantom Limb
Sensation Intensity Classification Accuracy (%)

1 30 2 85.36
2 50 2 92.18
5 50 5 93.01
3 70 5 94.08
4 90 5 93.80

Table 4.6 The classification accuracy of amputees’ sEMG data.

and the classification accuracy. It also showed that the accuracy increased with the time

since amputation, so the subjects are still capable of controlling the muscles despite the

cortical reorganization that takes place after amputation.

4.4.1.2 Amputees’ Data

The NinaPro DB3 [27, 116] provides a public dataset of sEMG signals collected from a

number of amputees with different amputation percentage, phantom limb sensation and

years since amputation. For the amputees, the subjects mentally try to repeat several

movements represented by movies that are shown on the screen of a laptop. The mus-

cular activity is gathered using 12 active double–differential wireless electrodes with

sampling rate 2kHz. In our experiments, we will perform our improved methods as

shown Figure 4.14 on the same set of the 17 movements identical to the ones in our

previous experiments and shown in Figure 4.2.

4.4.1.3 Experiments And Results

We follow the same work flow as shown in previous section in figure 4.14, and apply

these methods on all the available subjects in NinaPro dataset DB3.

The results of classification accuracy using GDOST and enhanced MDS on am-

putees data are shown in Table 4.6, and we can see that the accuracy ranges between

85.36% and 93.80%. By comparing these results results of tests on intact subjects

shown in Table 4.4, we see that, by using same methods, the signals collected from in-

tact subjects will give better classification results. This is consistent with other studies

as in [117] shows that the accuracy scores drop by approximately 20% using sEMG

signals of amputees compared to intact subjects. One of the reasons is that the am-

putation causes changes to the muscular anatomy and physiology that may affect also

myoelectric control performance.

The remaining forearm percentage has a clear affect on the accuracy as it drops

significantly when the percentage is 30%, while it is higher for both 70-90% remaining

forearm. This result is reasonable as we see in figure 4.15, the remnant muscles which

generates the sEMG signals get smaller with a smaller remaining forearm.
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Fig. 4.15 The percentage of remaining forearm.

Another important factor is the phantom limb sensation which is scaled between 0

to 5 (0 = no sensation; 5 = sensation as strong as it could be). The results show that the

amputees with higher limb sensation are more able to control the prosthetic.

4.4.2 Number of Movements’ Impact on Accuracy

It is known that the number of movements has a significant impact on the classifica-

tion accuracy, as by the increment on the movements, the discrimination between these

movements will be more challenging especially for the movements that are performed

by the same muscles. In our previous studies in sections 4.2 and 4.3, we focused on

the quality of the features and the methods used 17 movements. In order to understand

the limits and accuracy loss with movements number increment, we apply our methods

combination on NinaPro DB2 [27] with the full movements list as shown in figure 4.16.

The overall accuracy, using same work flow as shown in figure 4.14 is 90.02% for

the all 40 moves. In figure 4.17, we can see the confusion matrix on the classification.

In this matrix, it is clear that the moves group: 18,19,20,22 are relatively more miss-

classified between each others. By looking to their gestures in 4.16, we can see that

these move are physically very similar to each other. similarly for moves 27 and 28

which are both holding the ball with a slightly more clenched fist. The classification of

this kind of movements could be enhanced by improving the electrodes placement so

the small differential patterns of their sEMG signals could be well captured, besides to

increasing the training size for these specific movements.
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Fig. 4.16 Visual depiction of the 40 hand gestures [118].
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Fig. 4.17 The confusion matrix of classification of the 40 hand gestures shown in 4.16.
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Fig. 4.18 The confusion matrix of classification of the 4 hand gestures.

4.4.3 Data from ZHAW School of Health Sciences

4.4.3.1 Data key characteristics

This data is based on complex movements which require several muscles to be per-

formed, and performed with two hands included, such as opening a can or cutting a

bread. In order to extend our experiments on a completely different source of sEMG

data. This data is recorded by our partner team from ZHAW School of Health Sci-

ences in Zurich (Switzerland). The recorded sEMG data is a first step of creating wider

database with more subjects included. The main goal of experiments on this data was to

prove the quality of recorded sEMG and the used protocol in acquisition, and to apply

our methods on a dataset that is completely different with regard to:

• The Acquisition kit with different kind of used electrodes.

• The number of electrodes.

• The movements gestures.

• The sampling frequency.

• Acquisition protocol, including the repetitions number and time.

4.4.3.2 Experiments and results

We do the experiments on this dataset in the same way we did in previous ones as

shown in 4.14. This means that we use GDOST to extract features from the sEMG time

series and enhanced-MDS to reduce its dimension, and we evaluate the performance

using cross-folding on k-NN classifier. The classification accuracy of these movements

is 99.31%, which is relatively high. This accuracy is also affected by the small number

of movements and the type of movements. Figure 4.18 shows the confusion matrix of

these 4 movements classification.
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The results of this experiments show that our methods performance are not related

to the NinaPro data.

Here in this database with different experiment criteria, we proved the protocol of

acquisition of our partner’s team for there further measurements, and challenged our

methods with sEMG signals recorded under different conditions.

4.5 Algorithms and Results Recap

In this chapter, we made an extensive comparative study in section 4.2 for several com-

binations of sEMG TF features extraction and DR methods. We applied STFT, CWT,

ST and DOST as time frequency with linear and non-linear dimension reduction meth-

ods which are PCA, Isomap, DM and MDS. Morever, we applied a DL model with

TF features of ST as an input. These methods combinations were tested on a Ninapro

dataset of 17 movements and evaluated using known classifiers k-NN, LDA and SVM

with 5-Fold cross-validation. The best results were achieved by using ST with PCA

and k-NN, while DOST and MDS gave promising results. Based on the comparative

study, DOST was selected as a time-efficient method for TF feature extraction, and

MDS as a non-linear dimension reduction method. Then we improved the selected

methods in section 4.3 by introducing GDOST and enhancing the distance calculations

in non-linear DR methods. These improvements increased the classification accuracy

to 97.56% for 17 hand movements. After that in section 4.4, we extended our tests on

different datasets. First we applied the enhanced selected methods on amputees’ sEMG

data and observed the classification accuracy with the change of the clinical character-

istics of the subjects. Second, more experiments were made on a dataset of 40 hand

movements and the classification accuracy was 90.02%. Finally, the selected methods

were applied on a different sEMG data source built by a partner team and consists of 4

hand movements as a pilot data, there we achieved 99.31% as a classification accuracy.

The next chapter will give an overview about the main findings that could be helpful for

the readers who are working in the same field, as well as broader perspectives on the

topic.
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CHAPTER 5

CONCLUSION AND PERSPECTIVES

5.1 English Version

5.1.1 Thesis Overview

In this thesis, we explored the time-frequency domain in order to classify sEMG signals.

Our work was focused on both features extraction and dimension reduction methods of

sEMG signals.

Features Extraction Overview: Based on the state of the art studies, we directed

our research towards the TF features as the best representative features for the sEMG

signals. The methods we used such as STFT, CWT and ST were used in the literature;

but there were no concrete comparison between them under the same conditions which

significantly affect these studies’ impact. We applied these methods and provided more

insights about their performance. Based on the conclusions and knowledge obtained

from our studies, we introduced a new method to this field which is DOST to overcome

the complexity and performance of the previous methods to make solutions more suit-

able for real prostheses. Finally we improved the performance of DOST by using a

generalized version that uses a Gaussian window instead of a rectangular window.

Dimension Reduction Overview: The TF features lead to high dimension feature

space, which makes this step very critical in order to avoid classification over-fitting

and complexity. The main used method in the literature is PCA which is the base line

for dimension reduction, but the requirements of prosthetic controlling systems raise

different challenges as the training size and cross-subject features. In order to improve

this important stage, we moved to non-linear dimension reduction methods and applied

MDS, Isomap and DM. We extended our research about them as they have important

advantages. We changed the kernel’s calculations of these methods which are based
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on the similarity calculations and were able to significantly improve their performance

combined with the TF features.

Experiments Overview: We first applied all combination on the same dataset and

evaluated their performance regarding the classification accuracy and time consump-

tion. The evaluation was based on three widely used classifiers in this area (k-NN,

LDA, SVM) and by following cross-folding validation method. Then we applied our

enhanced selected methods on different datasets of amputees subjects to observe the

amputation impact on the classification accuracy. Moreover, we repeated our tests on

an increased number of the movements.

5.1.2 Experiments Conclusion

The comparative studies we did showed that the TF features are so far the best intrinsic

features that could describe the patterns in sEMG signals. The use of these features

leads to more robust and accurate classification compared to the TD, FD features, and

even better than the deep learning which requires relatively very large training set.

The advantages of TF features come with the price of their complexity and their high

dimensional space. This causes over-fitting in classification and higher computation

time which is limited in prosthetic applications. The study of different TF methods

showed that DOST gives promising results with trade-off between its accuracy and its

time efficiency. Furthermore, we applied the generalized version of DOST to improve

the results of classification.

Our studies on the dimension reduction methods showed that the non-linear methods

could outperform PCA with defining an appropriate similarity measurements between

the observations. We changed the distances measurements in the MDS and significantly

improved the associated classification accuracy.

The enhanced methods, GDOST, MDS, with the classifier k-NN are according to

our study the best combination which lead to better accuracy, and these methods proved

to be robust when applied on different database and with increment of the number of

movements.

5.1.3 Main Findings

We can summarise the main findings of this thesis in four key points:

Data: For having a proper evaluation, it is very useful to use database that offers var-

ious experimental options, as subjects, clinical situations, number of movements, etc...

Having these data collected under same conditions regarding the number of channels,

sampling rate, acquisition protocol... would help to fairly study the impact of different

factors on the overall classification.
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Features Engineering: The literature overview showed that both TD and TFD fea-

tures are sufficient in case of a limited physically-discriminant number of movements

as we can see in Table 2.2. By the increment of required movements to be controllable

by the prosthetic, the solutions should be based on the TFD features. Even with DL

models, the best results were done with TFD features as input for these models [63].

The challenge of complexity of these features is solvable by using DOST or GDOST

which we proposed in our research.

Dimension Reduction: We proved the efficiency of the non-linear dimension re-

duction methods combined with the TFD features, and it is recommended to use these

methods based on their needed training size, cross-subject efficiency, accuracy when

defining proper similarity measurement. In our research we were able to propose one

similarity measurement which significantly improved the classification accuracy.

Classification: We used the well-known classifiers in this field, and we found that

the k-NN leads to robust and more accurate classification, besides to the fact that it is

proven to perform well in this field. The quality of the features is the core of classifi-

cation performance, as the good feature engineering will improve the accuracy without

the need of more sophisticated classifiers.

5.1.4 Future Works

There are different ideas that deserve further investigation from our point of view:

• Channels Selection: the electrodes that are placed on the subjects will record

sEMG signals from different muscles based on their position on the subject. This

means that the activity on these electrodes will be affected by the muscle that

participates in the movement; the electrodes close to the involved muscles will be

the ones that record the important sEMG data. The ability to select these channels

and ignoring the rest would decrease the required computations which will lead

to more accurate and less complex classification. The channel selection is still

an open topic in this research field and need more investigation. Some of the

channels selection techniques are SVM Recursive Feature (SVM-RFE), Monte

Carlo feature selection, and SVD entropy which are tested in study [119].

• Our research focused on the movement classification, and there are still some

factors combined with the movements as force and temperature. These kind of

data are usually collected by extra sensors and a fusion process should be studied

and done in this direction.

• Improving the DL performances by pre-processing of the input in a way to reduce

the required training set for the DL. The DL models are usually able to do the

features engineering when supplied with the enough training set. The required
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size of training set would vary depending on complexity in the patterns that exists

in the input, hence choosing processed input (ex: TFD vs raw sEMG) would

speed up the training and lead to better results.

• sEMG signals are related to the individual anatomical, biochemical and physio-

logical characteristics of the subjects. This increases the need for an individual

training of the prosthesis. Giving amputees the ability to insert their feedback

about the correctness of the movements identification while using the prosthetic.

This will make the learning process more efficient. One approach that could

be studied is the reinforcement learning with fuzzy logic rules as an interface

between the prosthesis and the user. Quality of the gesture execution could be

evaluated depending on the interpretation of the user.

• More research could be done on the TF representation in order to find features

that could be sufficient for the pattern recognition. These features could be based

on the energy concentration in the TF. Recently a link between Gaussian Analytic

Functions (GAFs) and some time-frequency transforms of white noise has been

established in [120]. This work was motivated by earlier study [121] to filter

signals based on the zeros of their STFT. More recently, authors in [122] proved

the utility of the zeros distribution of the STFT to classify and anonymize the

acceleration signals. This approach could be applied on sEMG signals in order to

enrich the features extraction process.

• In this thesis, we used DOST as it was a time-efficient version of the ST, because

of the time limitation in prosthetic application. Different solution could be con-

sidered on the hardware optimization as in [123]. Moreover, we can calculate the

TF transform on-the-fly in real time and continuously accumulate the results to

generate the time-frequency matrix as proposed in [124].

At the end, we were able to classify 17 movements with sufficient accuracy for the

industry especially after we took time-efficiency into consideration. These results are

very competitive compared to the state of the art of existing solutions. We proposed

solutions that could be extended on more movements and applied for more challenging

sEMG pattern recognition. We also contributed to the usage and understanding of TF

features and DR for signal classification. This work paved the way for more theoretical

studies to be done in the future.
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5.2 Version en Français

5.2.1 Aperçu de la thèse

Dans cette thèse, nous avons exploré le domaine temps-fréquence pour classifier les

signaux sEMG. Notre travail s’est concentré sur les méthodes d’extraction de car-

actéristiques et de réduction de dimension des signaux sEMG.

Extraction de caractéristiques. À partir des études de l’état de l’art, nous avons

dirigé notre recherche vers les caractéristiques temps-fréquence (TF) en tant que meilleures

caractéristiques représentatives des signaux sEMG. Les méthodes que nous avons utilisées

telles que STFT, CWT et ST ont été utilisées dans la littérature; mais il n’y avait pas

de comparaison concrète entre elles dans les mêmes conditions, ce qui limite con-

sidérablement l’impact de ces études. Nous avons appliqué ces méthodes et fourni

plus d’informations sur leur performance. Ensuite, nous avons introduit une nouvelle

méthode dans ce domaine qui est DOST pour surmonter la complexité calculatoire, et

améliorer les performances des méthodes précédentes, afin de rendre les solutions plus

adaptées aux prothèses réelles. Enfin, nous avons amélioré les performances de DOST

en utilisant une version généralisée qui utilise une fenêtre gaussienne plutôt qu’une

fenêtre rectangulaire.

Réduction de dimension. Les caractéristiques TF conduisent à un espace de car-

actéristiques de dimension élevée, ce qui rend cette étape importante afin d’éviter le

surajustement lors de la classification. La méthode principalement utilisée dans la

littérature est l’ACP qui est la méthode de base pour la réduction de dimension, mais

les exigences des systèmes de commande de prothèse soulèvent différents défis tels que

la taille d’apprentissage et les caractéristiques inter-sujets. Pour améliorer cette étape

importante, nous avons opté pour des méthodes de réduction de dimension non linéaires

et avons appliqué MDS, Isomap et DM. Nous avons étendu notre recherche sur celles-ci

car elles présentent des avantages importants. Nous avons modifié les calculs du noyau

de ces méthodes qui sont basés sur les calculs de similarité et avons été en mesure

d’améliorer significativement leur performance combinée aux caractéristiques TF.

Expériences numériques. Nous avons d’abord appliqué toutes les combinaisons

sur le même ensemble de données et avons évalué leur performance en termes d’exactitude

de classification et de temps de calcul. L’évaluation était basée sur trois classificateurs

largement utilisés dans ce domaine (k-NN, LDA, SVM) et en suivant la méthode de

validation croisée. Ensuite, nous avons sélectionné les meilleures méthodes pour les ap-

pliquer à différents ensembles de données concernant des sujets amputés pour observer

l’impact de l’amputation sur l’exactitude de classification. Nous avons également répété

nos tests sur un nombre accru de mouvements.
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5.2.2 Conclusions des expériences

Les études comparatives que nous avons menées ont montré que les caractéristiques

TF sont jusqu’à présent les meilleures caractéristiques pour décrire les motifs dans les

signaux sEMG, dans un contexte de classification. L’utilisation de ces caractéristiques

conduit à une classification plus robuste et plus précise par rapport aux caractéristiques

TD, FD, et même par rapport à l’apprentissage profond, qui nécessite un ensemble

d’entraı̂nement par comparaison très grand. Les avantages des caractéristiques TF vi-

ennent avec un prix de complexité et de nombre de dimension. Cela provoque un sur-

ajustement dans la classification et un temps de calcul plus élevé, ce qui est limitant

dans les applications prothétiques. L’étude de différentes méthodes TF a montré que

DOST donne des résultats prometteurs avec un compromis entre sa précision et son ef-

ficacité temporelle. De plus, nous avons appliqué la version généralisée de DOST pour

améliorer les résultats de classification.

Nos études sur les méthodes de réduction de dimension ont montré que les méthodes

non linéaires pourraient surpasser l’ACP en définissant une mesure de similarité appro-

priée entre les observations. Nous avons changé les mesures de distance dans le MDS

et amélioré significativement la précision de classification associée.

Finalement, la méthode combinant GDOST, MDS améliorée, et classificateur k-NN

conduit selon notre étude à une meilleure précision. Cette combinaison s’est également

avérée robuste lorsqu’elle est appliquée à différentes bases de données et avec l’augmentation

du nombre de mouvements.

5.2.3 Principales conclusions

Nous pouvons résumer les principales conclusions de cette thèse en quatre points clés,

qui sont détaillés ci-dessous.

Données. Pour avoir une évaluation appropriée, il est très utile d’utiliser une base

de données qui offre diverses options expérimentales, comme les sujets, les situations

cliniques, le nombre de mouvements, etc. Avoir ces données collectées dans les mêmes

conditions en ce qui concerne le nombre de canaux, le taux d’échantillonnage, le proto-

cole d’acquisition... aiderait à étudier équitablement l’impact de différents facteurs sur

la classification globale.

Ingénierie des caractéristiques. L’étude de la littérature a montré que les car-

actéristiques TD et TFD sont suffisantes lorsque’on travaille sur un nombre limité de

mouvements physiquement bien distincts, comme on peut le voir dans le tableau 2.2.

Avec l’augmentation du nombre de mouvements requis pour être contrôlés par la prothèse,

les solutions devraient être basées sur les caractéristiques TFD. Même avec les modèles

de DL, les meilleurs résultats ont été obtenus avec les caractéristiques TFD en tant

qu’entrée pour ces modèles [63]. Le défi de la complexité de ces caractéristiques peut
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être résolu en utilisant la DOST ou la GDOST, ce que nous avons proposé dans notre

recherche.

Réduction de dimension. Nous avons prouvé l’efficacité des méthodes de réduction

de dimension non linéaires combinées aux caractéristiques TFD, et il est recommandé

d’utiliser ces méthodes en fonction de leur taille d’entraı̂nement nécessaire, de leur ef-

ficacité entre sujets, de leur précision lors de la définition de la mesure de similarité

appropriée. Dans notre recherche, nous avons ainsi pu proposer une mesure de simi-

larité qui a significativement amélioré la précision de la classification.

Classification. Nous avons utilisé les classificateurs bien connus dans ce domaine,

et nous avons constaté que le k-NN mène à une classification robuste et plus précise.Ainsi,

la qualité des caractéristiques est au cœur de la performance de la classification, car une

bonne ingénierie des caractéristiques améliorera la précision sans avoir besoin de clas-

sificateurs plus sophistiqués.

5.2.4 Perspectives

Suite à ces travaux de thèse, nous pouvons évoquer plusieurs idées qui méritent une

investigation plus approfondie.

• Sélection de canaux : les électrodes placées sur les sujets enregistreront des sig-

naux sEMG provenant de différents muscles en fonction de leur position sur le

sujet. Cela signifie que l’activité de ces électrodes sera affectée par tous les mus-

cles qui participent au mouvement ; les électrodes proches des muscles impliqués

enregistreront également un signal sEMG importantes. La capacité à sélectionner

ces canaux et à ignorer le reste réduirait les calculs nécessaires, ce qui conduirait

à une classification plus précise et surtout moins complexe. La sélection de

canaux est encore un sujet ouvert dans ce domaine de recherche et nécessite plus

d’investigation. Certaines des techniques de sélection de canaux sont la sélection

de caractéristique récursive SVM (SVM-RFE), la sélection de caractéristique par

Monte Carlo, et l’entropie SVD, qui ont été testées dans l’étude [119].

• Notre recherche s’est concentrée sur la classification des mouvements, mais il

existe encore certains facteurs combinés aux mouvements tels que la force et la

température. Ces types de données sont généralement collectés par des capteurs

supplémentaires et un processus de fusion devrait être étudié et effectué dans cette

direction.

• Les performances du DL pourraient être améliorées par prétraitement de l’entrée

de manière à réduire l’ensemble d’entraı̂nement requis. Les modèles DL sont

généralement capables de faire de l’ingénierie de caractéristiques lorsqu’ils sont

fournis avec suffisamment d’ensemble d’entraı̂nement. La taille requise de l’ensemble
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d’entraı̂nement variera en fonction de la complexité des motifs présents dans

l’entrée, le choix d’une entrée traitée (par exemple, TFD ou sEMG brut) accélérera

l’entraı̂nement et devrait conduire à de meilleurs résultats.

• Les signaux sEMG sont liés aux caractéristiques anatomiques, biochimiques et

physiologiques individuelles des sujets. Cela augmente la nécessité d’un en-

traı̂nement individuel de la prothèse. Cela pourrait aussi donner aux amputés

la possibilité d’insérer leur rétroaction pour la correction de l’identification des

mouvements lors de l’utilisation de la prothèse. Cela rendra le processus d’apprentissage

plus efficace. Une approche qui pourrait être étudiée est l’apprentissage par ren-

forcement avec des règles de logique floue comme interface entre la prothèse et

l’utilisateur. La qualité de l’exécution des gestes pourrait être évaluée en fonction

de l’interprétation de l’utilisateur.

• Des recherches supplémentaires pourraient être menées sur la représentation TF

afin de trouver des caractéristiques suffisantes pour la reconnaissance de mo-

tifs. Ces caractéristiques pourraient être basées sur la concentration d’énergie

dans le domaine TF. Récemment, un lien entre les fonctions analytiques gaussi-

ennes (GAF) et certaines transformées temps-fréquence du bruit blanc a été établi

dans [120]. Ce travail a été motivé par une étude antérieure [121] visant à fil-

trer les signaux en fonction des zéros de leur STFT. Plus récemment, les auteurs

de [122] ont prouvé l’utilité de la distribution des zéros de la STFT pour classifier

et anonymiser les signaux d’accélération. Cette approche pourrait être appliquée

aux signaux sEMG afin d’enrichir le processus d’extraction de caractéristiques.

• Dans cette thèse, nous avons utilisé la DOST car c’était une version plus rapide

que la ST, en raison des limites de temps dans l’application prothétique. Différentes

solutions pourraient être envisagées pour l’optimisation matérielle, comme décrit

dans [123]. De plus, nous pourrions calculer la transformée TF en temps réel et

accumuler continuellement les résultats pour générer la matrice temps-fréquence,

comme proposé dans [124].

Finalement, nous avons pu classifier 17 mouvements avec une précision suffisante

pour l’industrie, notamment après avoir pris en compte les temps de calculs. Ces

résultats sont très compétitifs par rapport à l’état de l’art des solutions existantes. Nous

avons proposé des solutions qui pourraient être étendues à davantage de mouvements

et appliquées à une reconnaissance de motifs sEMG plus complexes. Nous avons

également contribué à l’utilisation et à la compréhension des caractéristiques de TF

et de la RD pour la classification des signaux. Ce travail a ouvert la voie à des études

théoriques supplémentaires à l’avenir.
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APPENDIX A

SEMG DATABASE FROM ZHAW

SCHOOL OF HEALTH SCIENCES IN

ZURICH (SWITZERLAND)

A.1 Background Information

Measuring system and information on electrodes: Bipolar electrodes (Blue Sensor,

Ambu, Denmark, Type P-00, interelectrode distance: 20.148 mm) were used with a

wireless myon sEMG system (myon AG, Baar Switzerland; Type 142 RFTD-A01, D02-

RFTD) and placed according to the photos in Table A.1. All data was collected using a

sampling rate of 1200 Hz and 12-bit resolution. Additionally, the signal from the sEMG

system was amplified by 1000 or 2000 Hz (which channel has which amplification can

be seen in the mat-file of the data). Data was recorded with a camera-based motion

capture system (Vicon, Oxford. UK, Version 2.11).

A.2 Tasks

First task: Open bottle (0.5l water plastic bottle fully filled):

• Starting position: sitting with a 90° angle of elbows, hip, and knees; wrists are on

the desk at marked points at shoulder width, bottle is on a marked point (between

wrist marks and 15cm from desk).

• Mark on bottle neck and on its lid.

• Task instructions: Open the bottle until there is no resistance (the lid is on the last

crease) and close it until the marks align. Then return to the starting position.
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Second task: Pour water from a jug into a glass:

• Starting position: sitting with a 90° angle of elbows, hip, and knees, wrists are

on the desk at marked points at shoulder width, jug and glass are at two marked

points (1/3 and 2/3 of the distance between the two wrist markings).

• The jug was filled with 1l of water.

• Task instructions: Lift the glass approximately 10cm from the table, pour wa-

ter from the jug into the glass until a mark on the glass is reached. Then put

everything down on the marked points and return to the starting position.

Third task: Cut bread:

• Starting position: standing with feet hip-width apart, arms hang loosely by the

side and the upper body is in an upright position.

• Baguette (300g) on a board, knife next to it.

• Task instruction: Take the knife with one hand, hold the bread with the other hand

and cut a piece of 1cm width from it. Then lay down the knife and return to the

starting position

• After cutting two pieces, the bread slices were taken from the board.

Fourth task: Cut and eat meat imitate:

• Starting position: sitting with a 90° angle of elbows, hip, and knees; wrists are on

the desk at marked points at shoulder width.

• A piece of clay (approx. 1cm thickness) is placed on a plate, the fork and knife

are placed next to it.

• Task instructions: Take the knife and fork into your hands, cut a piece of clay

and bring the cut piece to the mouth. Then lay everything down and return to the

starting position.

• After each repetition the clay is attached again in order to achieve a similar start-

ing point again.
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Table A.1: The electrodes placement in ZHAW database.

Extensor carpi ul-

naris (amplifica-

tion 1000)

Wrist extension

Radial adduction

of the wrist

• Right: 10

• Left: 13

Flexor carpi ra-

dialis (amplifica-

tion 1000)

Palmarflexion

Radialabduc-

tion Assisting

pronation when

the elbow is

stretched

• Right: 9

• Left: 12

Biceps brachii

(amplification

1000)

Elbow flexion
• Right: 11

• Left: 14

Muscle Function EMG Channel

Continued on next page
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Table A.1: The electrodes placement in ZHAW database. (Continued)

Biceps brachii

(amplification

2000)

Elbow extension
• Right: 3

• Left: 5

Deltoideus

Medius (amplifi-

cation 2000)

Abduction of the

shoulder joint

• Right: 4

• Left: 6

Muscle Function EMG Channel
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136, 2007.

[24] K. Englehart, B. Hudgin, and P.A. Parker. A wavelet-based continuous classi-

fication scheme for multifunction myoelectric control. IEEE Transactions on

Biomedical Engineering, 48(3):302–311, 2001.

[25] Dapeng Yang, Jingdong Zhao, Li Jiang, and Hong Liu. Dynamic hand motion

recognition based on transient and steady-state emg signals. International Jour-

nal of Humanoid Robotics, 9(01):1250007, 2012.
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[32] Francesca Cordella, Anna Lisa Ciancio, Rinaldo Sacchetti, Angelo Davalli, An-

drea Giovanni Cutti, Eugenio Guglielmelli, and Loredana Zollo. Literature re-

view on needs of upper limb prosthesis users. Frontiers in neuroscience, 10:209,

2016.

[33] Martin Vilarino. Enhancing the control of upper limb myoelectric prostheses

using radio frequency identification. 2013.

[34] Alexandre Calado, Filomena Soares, and Demétrio Matos. A review on

commercially available anthropomorphic myoelectric prosthetic hands, pattern-

recognition-based microcontrollers and semg sensors used for prosthetic control.

In 2019 IEEE International Conference on Autonomous Robot Systems and Com-

petitions (ICARSC), pages 1–6. IEEE, 2019.

[35] Kexiang Li, Jianhua Zhang, Lingfeng Wang, Minglu Zhang, Jiayi Li, and

Shancheng Bao. A review of the key technologies for semg-based human-robot

interaction systems. Biomedical Signal Processing and Control, 62:102074,

2020.

[36] Muhammad Zahak Jamal. Signal acquisition using surface emg and circuit de-

sign considerations for robotic prosthesis. Computational Intelligence in Elec-

tromyography Analysis-A Perspective on Current Applications and Future Chal-

lenges, 18:427–448, 2012.

[37] Yves Blanc and Ugo Dimanico. Electrode placement in surface electromyogra-

phy (semg)” minimal crosstalk area “(mca). The Open Rehabilitation Journal,

3(1), 2010.

[38] Scott Day. Important factors in surface emg measurement. Bortec Biomedical

Ltd publishers, pages 1–17, 2002.

[39] Xu Zhang, Xiang Chen, Zhang-yan Zhao, You-qiang Tu, Ji-hai Yang, Vuokko

Lantz, and Kong-qiao Wang. Research on gesture definition and electrode place-

ment in pattern recognition of hand gesture action semg. In Medical Biometrics:

98



First International Conference, ICMB 2008, Hong Kong, China, January 4-5,

2008. Proceedings 1, pages 33–40. Springer, 2007.

[40] Xueyan Tang, Yunhui Liu, Congyi Lv, and Dong Sun. Hand motion classification

using a multi-channel surface electromyography sensor. Sensors, 12(2):1130–

1147, 2012.

[41] Bernabe Rodrı́guez-Tapia, Israel Soto, Daniela M Martı́nez, and Norma Candolfi

Arballo. Myoelectric interfaces and related applications: current state of emg

signal processing–a systematic review. IEEE Access, 8:7792–7805, 2020.

[42] Heather Daley, Kevin Englehart, Levi Hargrove, and Usha Kuruganti. High den-

sity electromyography data of normally limbed and transradial amputee subjects

for multifunction prosthetic control. Journal of Electromyography and Kinesiol-

ogy, 22(3):478–484, 2012.

[43] Alex Andrews, Evelyn Morin, and Linda McLean. Optimal electrode config-

urations for finger movement classification using emg. In 2009 Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society,

pages 2987–2990. IEEE, 2009.

[44] Gianluca De Luca. Fundamental concepts in emg signal acquisition, 2003.

[45] Alexandre Balbinot and Gabriela Favieiro. A neuro-fuzzy system for characteri-

zation of arm movements. Sensors, 13(2):2613–2630, 2013.

[46] Yinfeng Fang, Xiangyang Zhu, and Honghai Liu. Development of a surface

emg acquisition system with novel electrodes configuration and signal represen-

tation. In International Conference on Intelligent Robotics and Applications,

pages 405–414. Springer, 2013.

[47] Maria Hakonen, Harri Piitulainen, and Arto Visala. Current state of digital signal

processing in myoelectric interfaces and related applications. Biomedical Signal

Processing and Control, 18:334–359, 2015.

[48] DC Toledo-Perez, Juvenal Rodrı́guez-Reséndiz, and Roberto A Gómez-Loenzo.
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Ervin Sejdić. A step toward real-time time–frequency analyses with vary-

ing time–frequency resolutions: Hardware implementation of an adaptive s-

transform. Circuits, Systems, and Signal Processing, pages 1–22, 2022.

[124] Mahfoud Drouaz. Les transformées temps-fréquence appliquées au non-intrusive

load monitoring. 2018.

106


	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF TERMS AND ABBREVIATIONS
	Introduction
	English Version
	Background And Motivation
	Upper Limb Prosthetic
	sEMG Signals
	Objectives
	This Thesis

	Version en Français
	Contexte et motivation
	Prothèse du membre supérieur
	Signaux sEMG
	Objectifs
	Cette thèse


	Literature Review
	Commercially-Available Prosthesis
	sEMG Classification Work Flow
	sEMG Acquisition
	Windowing
	Feature Extraction
	Time Domain
	Frequency Domain
	Time-Frequency Domain

	Dimension Reduction
	Classification
	Deep Learning
	Methods Overview
	Literature Review Recap

	Theoretical Background
	sEMG Data Sources
	Analytical Modelling of sEMG Signals
	ZHAW School's Pilot sEMG Data
	Public Database

	Features Extraction
	Short Time Fourier Transform
	Continuous Wavelet Transform
	Stockwell Transform
	Discrete Orthonormal Stockwell Transform

	Dimension Reduction
	PCA
	Manifold Learning
	Isomap
	Diffusion Maps
	Multidimensional Scaling

	Theoretical Background Recap

	Algorithms and Results
	Algorithmic Considerations
	Main Work Flow
	The Referenced Data
	Feature's Sliding Window
	Feature Extraction
	Dimension Reduction
	Classification

	Methods Comparative Study
	TF Methods Comparison
	Dimension Reduction Methods Comparison
	Classifiers Comparison
	Deep Learning
	Comparison Recap

	Generalized DOST and its Similarity Measurements
	Generalized DOST
	Feature Extraction from GDOST
	Similarity Measurements
	Distance Synchronization
	Experiments
	Results
	Confusion Matrix
	Section Recap

	Generalization on Different Datasets
	Amputation Impact on Classification Accuracy
	Number of Movements' Impact on Accuracy
	Data from ZHAW School of Health Sciences

	Algorithms and Results Recap

	Conclusion and Perspectives
	English Version
	Thesis Overview
	Experiments Conclusion
	Main Findings
	Future Works

	Version en Français
	Aperçu de la thèse
	Conclusions des expériences
	Principales conclusions
	Perspectives


	Appendix sEMG Database from ZHAW School of Health Sciences in Zurich (Switzerland)
	Background Information
	Tasks
	           LIST OF PUBLICATIONS
	           REFERENCES


